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Abstract. Our research involves application of methods well-studied in
virtual multiagent systems (MAS) but less well-understood in physical
multi-robot systems (MRS). This paper investigates the relationship be-
tween performance results collected in parallel simulated (multiagent)
and physical (multi-robot) environments. Our hypothesis is that some
performance metrics established in simulation will predict results in the
physical environment. Experiments show that some performance metrics
can predict actual values, because data collected in both simulated and
physical settings fall within the same numeric range. Other performance
metrics predict relative values, because patterns found in data collected
in the simulated setting are similar to patterns found in the physical set-
ting. The long term aim is to establish a reliability profile for comparing
different types of performance metrics in simulated versus physical envi-
ronments. The work presented here demonstrates a first step, in which
experiments were conducted and assessed within one parallel simulated-
physical setup.

1 Introduction

Our research investigates issues that are well-studied in virtual multiagent sys-
tems (MAS) but present particular difficulties in physical multi-robot systems
(MRS). These issues center around how to coordinate activity and allocate tasks
to team members in real-time, dynamic, noisy, constrained environments. An
overarching goal is to identify which MAS approaches are feasible for multi-
robot teams and transfer well in terms of performance to an MRS setting.

This work is motivated by two related application areas: urban search and
rescue (USAR) [1, 2] and humanitarian demining [3, 4]. In both instances, teams



of robots are deployed to locate targets of interest in terrain that is potentially
unsafe for humans. In urban search and rescue, robots explore an enclosed space,
such as a collapsed building, and aim to locate human victims. In humanitarian
demining, robots explore an open space, such as a field in a war zone, to search
for anti-personnel mines that may be hidden from view. The goal is to locate
mines so that they can be disarmed and the region rendered safe.

These two application areas have a number of fundamental tasks in com-
mon. Each robot must be able to explore a region and localize. Each robot
must also be able to recognize objects of interest with on-board sensors, possi-
bly with augmented intelligence to interpret sensor input. The team members
should work together to accomplish the team’s goal(s) and take advantage of
members’ individual abilities and strengths to complete tasks effectively and
efficiently. Strategies to address these issues often stem from MAS solutions im-
plemented in virtual environments, where agents may have perfect and often
complete information. In contrast, in a multi-robot setting, most information is
noisy, incomplete, and often out-of-date. The challenge is to identify which MAS
solutions can work in an MRS environment and adapt them accordingly.

The work presented here explores the hypothesis that some performance met-
rics established in simulation can transfer reliably to the physical environment.
This particularly applies to relative measurements, such as the change in execu-
tion time when more tasks are allocated, which increases with regularity within
both physical and simulated environments. This hypothesis will tell us how much
return we can expect on the investment of time and effort to develop a simulated
model of a multi-robot system. If no metrics reliably transfer from the simulation
to the physical environment, then the simulation of alternative mechanisms will
not provide any useful prediction of their performance on real robots.

2 Background

The related work discussed below focuses on task allocation in multi-robot sys-
tems, which is the ultimate application area of our research. The large majority
of this work is conducted in simulation, though some experiments have been
conducted with physical robots. An increasing area of interest is the compari-
son between simulated and physical systems. Some work emphasizes improving
the fidelity of the simulation system in order to decrease the gaps between per-
formance measures (e.g., [5, 6]), while other work explores the notion of mixed
reality systems that operate in both environments simultaneously (e.g., [7]).

In general, research on multi-robot systems considers both the challenges
faced by individual robots and the coordination of a robot team to meet these
challenges. Early work on multi-robot systems [8] included foraging, a standard
task where robots systematically sweep an area as they search for objects (e.g.,
[9]). This has much in common with our target areas of application: search and
rescue, and humanitarian demining. Techniques have been developed to ensure
that the entire boundary of a space is visited [10], that search finds a specific
target [11], and that a mobile target is kept under observation [12, 13]. Other



major areas of investigation include localization [14], mapping and exploration
[15], and strategies to manage wireless connectivity among robots [16]. With si-
multaneous localization and mapping (SLAM) [17], additional information from
several robots can simplify a problem and speed the solution that would have
been provided by a single robot [18]. Nonetheless, multi-robot SLAM can also
lead to inconsistency in position estimates [19]. Other challenges for a multi-
robot team are similar to those for one robot, complicated by the need to merge
or expand single-robot solutions to incorporate other robots. Path planning [20]
is one well-studied example of this multiple solution issue.

Some tasks cannot be accomplished by one robot, such as the transport of
an object too large for a single robot to move [21]. Other issues, such as the
dynamic allocation of tasks to robots [22, 23], simply do not arise with a single
robot. Task allocation is particularly challenging and has received substantial
attention. The distribution of responsibilities among a group of individuals is
a complex optimization problem. It is made more difficult because robot team
requirements may change over time [23], and because the abilities of individual
robots to address particular tasks are conditioned in part on their changing loca-
tions. Heterogeneous robot teams, where each member has different capabilities,
further complicate the optimization problem.

The task allocation literature for multi-robot teams includes a strong thread
on the use of auctions [24–26] and market-based mechanisms in general [27–29].
This work offers the various tasks for “sale” to robot team members. Individual
robots indicate how much they are willing to “pay” to obtain tasks, and tasks
are allocated based on bids for them. Typically, the robot with the best bid
wins the task5. For example, this approach has been used to organize robots for
exploration tasks [30, 31]. Areas to explore were offered “for sale,” and robots
bid based on their distance to the locations on offer. Allocation favored lower
bids, and thereby tended to allocate areas closer to robots. That market was
constructed, however, to ensure that robots did not remain idle when several
robots were initially close to the same unexplored area. Another example is the
use of simple auctions to allocate roles and, correspondingly, tasks associated
with those roles, to robots on a multi-robot soccer team [32]. Robots bid on
roles based on their proximity to the ball and the goal, and roles changed in real
time, as the game progressed. Market-based approaches are attractive because
they can consider individuals’ changing abilities while balancing them against
the performance of the team as a whole.

3 Motivation

Our research involves comparing a range of coordination mechanisms from the
MAS literature, to see how techniques studied theoretically and evaluated in
simulation perform in the rough-and-ready world of low-end physical robotics.

5 The assessment of “best” is context-dependent. In some applications, the lowest bid
is awarded (e.g., if the bid reflects the cost to complete a task), while in others, the
highest bid wins (e.g., if the bid reflects the benefit of completing a task).



In this paper, we concentrate on the use of a simple market-based mechanism
applied to a very specific task. To explore a region efficiently with a team of
robots, it is natural to operate several robots in parallel, but this raises the
question of how best to coordinate them. We studied a simple version of this
problem. Given a set of n robots, we considered how best to allocate them to
move to m different positions, which we call points of interest or interest points.
Specifying points of interest is an abstraction for the allocation of search areas
to robots, where movement to a point of interest represents that the robot has
searched the relevant area. Future work will address the follow-on task, where
the robot actually searches the area.

The allocation method we used in these experiments is a pseudo-auction
mechanism that attempts to balance, across the team, the robots’ estimated costs
to complete all tasks. Given robots’ initial locations and a list of interest-point
locations, robots “bid” for interest points. Bids are determined by the robots’
distance to the points, as calculated by an A* [33] path-planner with a map
of the area. Points are allocated one-by-one, in a series of sequential auctions.
In each auction, a robot that was allocated interest points in previous auctions
considers these points in its bid in the current auction. The robot estimates the
cost to travel from its most-recently-allocated interest point to the new point;
whereas robots that have not yet been allocated any points estimate their travel
costs from their initial positions, prior to the start of the first auction. In some
situations, this approach will clearly be less efficient in total distance traveled
than a combinatorial auction which allowed robots to bid on bundles of locations.
The sequential auction, however, will likely be more efficient computationally,
given the well-documented computational cost of combinatorial auctions [34, 35],
and hence more practical in a real-time, dynamic environment.

Our motivation for the experiments documented here is to assess the potential
benefits of three stages of development within multi-robot systems research. The
first stage designs complex task allocation mechanisms, the second stage assesses
those mechanisms in a simulated environment, and the third stage implements
and assesses them in a physical environment. If complex allocation mechanisms
that look good “on paper” and/or perform well in simulation fail to perform well
in physical MRS environments, then perhaps it is not worth the time and effort
to develop simulation environments. We want to know that what we learn from
theoretical analysis and prototype simulations has some predictive power in the
physical world. The work described here addresses precisely this concern.

4 Experimental environment

We conducted a series of parallel experiments with physical robots and in simu-
lation. Our experimental testbed models the interior of a building, with a large
space including six rooms and a “hallway,” which the robots explore, as described
above. The physical arena is shown in Figure 3. We designed and implemented
a dual system architecture, illustrated in Figure 1, in which both environments
share common underlying system components. These include: a Task Allocator,
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a Central Server, and one Robot Controller for each robot. This dual archi-
tecture supports parallel experimentation and evaluation in both physical and
simulation environments, such as those described in Section 5.

The Central Server handles communication between system components, act-
ing as a clearinghouse for passing messages. For each (physical or simulated)
robot in the system, a Robot Controller is instantiated; it sends low-level mes-
sages to the robot about how to move. The details of our framework have been
described elsewhere [36]. For now, it suffices to say that the framework is open-
source and uses Player/Stage6 [37, 38] as a hardware abstraction layer. The
uniform API that Player provides allows us to write one controller for each kind
of robot; this controller can communicate with either the physical platform or
its simulated counterpart. (These are the boxes labeled “Robot Controller” in
Figure 1.) The Task Allocator determines which robot should explore which in-
terest point(s). For the work discussed here, only one allocation mechanism was
used, but ongoing related work involves assessment and comparison of a range
of different allocation mechanisms. The remainder of this section describes the
differences between the physical and simulated environments.

4.1 Physical environment

The two main components of the physical environment are the robots and a global
vision system.

Robots. Our multi-robot team is comprised of inexpensive, limited-function
platforms. For the experiments described here, we used the Surveyor SRV-1
Blackfin,7 a small tracked platform equipped with a webcam and 802.11 wireless.
Because the Blackfin (pictured in Figure 2) has very limited on-board processing,
our robots rely on off-board processing. Each platform is wirelessly tethered to

6 http://playerstage.sourceforge.net/
7 http://www.surveyor.com/SRV_info.html
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Fig. 2. The Surveyor SRV-1 Blackfin

a remote machine that runs its Robot Controller (as shown in Figure 1). This
mode of communication naturally introduces some lag into the control loop. The
global vision system (described below), however, makes the lag less pronounced
than it would be if the robots relied on on-board vision, which would require the
transmission of image data to the off-board robot controller.

Global vision system. To provide an overhead view of the testbed, six Log-
itech C600 Webcams are suspended 10 feet above the arena. The cameras are
arranged in a 2×3 grid, so each camera covers one sixth of the rectangular arena.
Each camera is managed by a Camera Agent that employs OpenCV libraries8

[39] to handle image processing. The Camera Agents identify the robots and
transmit their positions (2-dimensional location in global (x, y) arena coordi-
nates and orientation θ, in degrees) to the Central Server. The Camera Agents
function independently and only broadcast data to the Central Server; they do
not receive any messages (other than acknowledgements that their own messages
have been received). Since the robots are identical, the vision system needs some
help to identify them uniquely. To distinguish among them, each robot is topped
by a hat, a 4.25” by 5.5”,white rectangle with a pattern of 1.125” diameter black
dots. The dots are arranged in a 2× 3 grid; each grid square either has a dot or
does not. Each hat is a character from the Braille alphabet9. Examples appear
in Figure 2.

4.2 Simulation environment

To support our simulation experiments, we employ the Stage environment that
is integrated with Player. We can use Stage to run simulation experiments with
exactly the same Robot Controllers used in the experiments with physical robots.
The only difference is that rather than communicate with real robots in the test
arena, in the simulation experiments, the Robot Controllers communicate with
simulated robots in a Stage version of the test arena.

8 http://opencv.willowgarage.com/wiki/
9 http://www.afb.org/section.asp?SectionID=6



Fig. 3. The robots’ physical environment

id operating starting number of
mode configuration interest points

PC3 physical clustered 3
PD3 physical distributed 3
PC8 physical clustered 8
PD8 physical distributed 8
SC3 simulated clustered 3
SD3 simulated distributed 3
SC8 simulated clustered 8
SD8 simulated distributed 8

Table 1. A summary of the experiments. For each, we conducted 5 iterations in the
physical environment and 5 iterations in simulation.

5 Experiments and Results

As described in Section 3, our principal aim here is to compare the results
obtained in simulation to those obtained with physical robots. Our experiments
varied settings for three parameters:

– operating mode: physical (P) or simulated (S);
– initial conditions: starting positions for the robots that were distributed (D)
or clustered together (C); and

– number of tasks: number of interest points to allocate (m ∈ {3, 8}).

For all the experiments described here, we used n = 3 robots. For each value of
m tested, the interest points were in the same locations in the arena.

There were two initial locations for the robots: clustered and distributed.
Under clustered, the robots begin grouped together in the same “room” in the
arena. Under distributed, the robots are spread into different rooms throughout



the arena. The clustered setting models the situation where the robots have just
entered the space together. For example, an urban search and rescue scenario
may have only one entry, through a doorway that is accessible to first-responders
outside; it is quite reasonable that there would be only one such point. The dis-
tributed setting models the situation after some previous activity (e.g., mapping)
has dispersed the robots. In both distributed and clustered settings, each robot
starts from the same position for each run of the experiment (i.e., a given robot
has a specific, repeated starting position for all the runs in an experiment on m

tasks). The full set of combinations of parameters appears in Table 1.
For each run of each experiment, we recorded the following measurements:

– deliberation time, the total time required to allocate the tasks
– execution time, the total time required to complete all the tasks

and, for each robot,

– travel velocity, the total distance it traveled divided by the amount of time
that it was moving

– idle time, the total amount of time that it was not executing a task, for
example because it had no more interest points to visit

– delay time time spent avoiding collisions with another robot, explained below

Because each experiment involves many robots moving in a restricted area, they
naturally get in each other’s way. When robots are close enough to require evasive
action, our system detects a “near collision,” and the robots stop moving. Then
the robot closest to its goal (current interest point) is given the right-of-way.
The other robot waits until its path is clear, and then continues on its way. The
time that a robot was stopped for this reason is its delay time. In addition to
measuring delay time, we counted the number of times that robots were delayed
in this manner (number of avoided collisions).

5.1 Results

The results reported here are based on five representative runs for each set of ex-
perimental conditions in the physical environment and for each set of experimen-
tal conditions in the simulated environment. Each experiment has a 3-character
identifier: the first indicates the operating mode (P for physical and S for simu-
lated); the second indicates the initial condition (C for clustered all in one room
and D for distributed); and the third indicates the number of interest points
in the problem (m ∈ {3, 8}). When we compare the results from the physical
and simulated experiments under common conditions, we use the last two (com-
mon) characters of the identifier; for example, the results labelled C3 show the
results for the experiments that used the clustered starting condition and sought
3 interest points.

We compare the data in several ways. First, we compare the six numeric
metrics described at the end of the previous section (deliberation time, execution
time, travel velocity, idle time, delay time, and number of avoided collisions).



deliberation execution travel idle delay avoided
time time velocity time time collisions

PC3 0.99 (0.04) 89.89 (15.55) 10.54 (1.68) 80.34 (34.17) 19.18 (4.95) 8.2 (1.5)
PC8 3.69 (0.43) 168.19 (41.15) 9.79 (2.00) 100.10 (51.79) 23.50 (7.84) 8.2 (3.5)
PD3 1.18 (0.03) 58.64 (4.96) 12.99 (1.69) 23.33 (6.60) 8.61 (6.30) 2.6 (1.5)
PD8 4.28 (0.08) 75.31 (17.72) 11.50 (1.88) 33.72 (28.52) 9.27 (6.50) 1.8 (1.1)
SC3 1.06 (0.06) 272.03 (37.50) 2.54 (0.54) 141.26 (29.32) 136.71 (75.86) 10.2 (3.4)
SC8 4.39 (0.22) 457.94 (33.26) 2.75 (0.33) 212.63 (40.69) 114.86 (35.57) 11.8 (3.0)
SD3 1.36 (0.09) 221.11 (5.31) 3.05 (0.19) 80.62 (6.87) 36.82 (17.56) 3.8 (2.0)
SD8 4.46 (0.16) 240.15 (1.20) 2.79 (0.21) 45.28 (2.94) 38.18 (1.30) 2.2 (0.4)

Table 2. Summary of experimental results. Mean (standard deviation) over 5 runs.

We compute the mean and population-based standard deviation for all metrics,
averaged over the number of runs conducted for each set of conditions. A sum-
mary of those results appears in Table 2. The raw data is plotted in Figure 4.
The second way we compare the results is by looking at the trajectories, or paths
taken, by each robot. Sample trajectories are illustrated in Figure 5. The final
way we consider the data is in terms of how well it supports our hypothesis
and longer term goal, to use data collected in simulation as a predictor for data
collected with physical robots.

Analysis of Metrics. The first observation that we make about the results is
that the metrics we collected are broadly in line with intuition, in the majority
of cases. Our set of experiments covered two variables: problem size, as indicated
by number of interest points, m ∈ {3, 8}; and starting condition, clustered or
distributed. Thus, our expectations are as follows. First, we expect that met-
rics which measure the amount of time to compute and execute a solution will
increase with problem size, i.e., deliberation time and execution time. Second,
we expect that metrics which measure the amount of congestion the robots en-
counter when executing a solution will be larger when they start in a clustered
setting, i.e., delay time and number of avoided collisions. Since the interest points
themselves were distributed, we also expect that the robot usage will be more
efficient when the robots start in a distributed setting; in other words, the total
amount of time that robots who finish their tasks before others will sit “idle”,
waiting for the others to finish, will be less than if robots start in a clustered
setting—because in the latter case, some robots will have to travel further than
others and the distance traveled by all robots will be more varied.

These results match well. First, for all combinations of operating mode and
initial conditions, deliberation time and execution time increase with problem
size, as illustrated in Figures 4a and 4b, respectively. Second, the amount of
idle time, delay time and the number of avoided collisions increases when robots
start in the clustered setting, for both physical and simulated environments
(Figures 4d, 4e and 4f, respectively).
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Fig. 4. A summary of the results. The experiment IDs describe the parameter settings.
IDs are of the form 〈starting condition〉〈number of robots〉: C indicates all the robots
started clustered together, D indicates they were initially distributed. Results from all 5
runs conducted in each experimental condition are shown. The grey rectangles outline
the range of results from the experiments conducted with physical robots. The unfilled
rectangles outline the range of results from the experiments conducted in simulation.



The travel velocity (Figure 4c) is slower in simulation, but this is because
the simulator was not calibrated on the speed of the physical robots. In future
work, we will calibrate the simulation to produce speed-up over the physical
environment. However, the travel velocity data is still useful and in line with
intuition, because it shows that the variation in speeds is much greater in the
physical environment than in simulation.

Path difference. The simulator does not capture the inaccuracies that dog the
precise maneuvering of any robot. Compare Figures 5a to 5c and 5b to 5d to
see this. These are traces of the position of the simulated and physical robots,
respectively, in the D3 and C8 experiments. The fact that the simulator can
still manage to produce reasonable predictions of some of our metrics led us to
wonder how much the difference between the paths predicted by the simulator
and those taken by the real robots might be affecting our results. Figure 5f
attempts to assess this discrepancy. To obtain Figure 5f, we created a series of
graphs like Figure 5e, which is the result of plotting a pair of paths from the
same experimental scenario (where a given robot starts from a given point and
ends at a given point); it treats the two paths as two sections of the perimeter of
an oddly shaped polygon. The idea is that the area of this polygon is a measure
of how much the paths differ from one another, where a larger area means more
disparate paths. Once normalized by dividing the area by the perimeter, this
produces an estimate of the difference between any two paths. On a pair of runs,
this measures the variation between the two paths travelled.

To assess a set of runs for a scenario, we took one of the runs of the physical
robot and used the above method to compute how much that run varied from the
other four runs of the real robots. For each of the four scenarios in Figure 5f, the
average and standard deviation of this measure is plotted by the grey boxes. This
same physical baseline run was then compared with the five simulated runs using
the same method. These results are plotted in Figure 5f, where the clear boxes
with the blue lines indicate the average value. The fact that these values are
higher than their counterparts for the physical robots shows that the simulated
runs are further from the baseline physical run than from the physical runs. In
other words, the baseline physical run is more similar to the other physical runs
than it is to the simulations. The physical runs also have a greater variance than
the simulated runs, as one would expect.

Once again, across the scenarios, the results from the simulations qualita-
tively match the results from the physical robots. Indeed, where the simulations
suggest greater variation in path and thus a greater area, the performance of the
physical robots bears this out. This suggests that despite the fact that the sim-
ulations do not predict the precise path taken by the real robots, they capture
the essential features.
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Fig. 5. Comparing paths taken by simulated and physical robots. (a) and (c) simulated
and real robot paths, respectively, for 3 interest points in the distributed scenario.
(b) and (d) simulated and real robot paths, respectively, for 8 interest points in the
clustered scenario. (e) An example of path difference (comparing the path of one robot
in real and simulated versions of the 8-interest-point distributed scenario). (f) The
average path difference across all scenarios.



Comparing the trajectory plots highlights some of the differences between
the physical and simulation environments. Aside from the obvious disparities
stemming from noise in the physical environment that is not present in the sim-
ulation, there is a difference between the two implementations regarding how a
robot maintains its planned path during execution. In both environments, the
path-planning algorithm uses A* to generate a sequence of multiple waypoints.
To guide a robot from its current location to its next waypoint, its Robot Con-
troller sends the robot a “goto” command, directing it to each point. This is
translated into a “turn” followed by “go forward” commands sent to the robot
platform (simulated or physical). A motion model is employed both in the sim-
ulation and the physical environment, to predict how far the robot travels given
the commands it receives. In the simulation environment, we have perfect infor-
mation about the position of the robot. The robot continually checks its position
as it travels along its path, comparing its position as predicted by the motion
model with its known (based on perfect information) position, and adjusts as
necessary. In the physical environment, the robot’s position is computed by the
global vision system or from a calibrated odometry model when the robot is not
in the field-of-view of the vision system. The robot checks its predicted position
with its computed position after completing the “goto” command. If it is not too
far away from the desired waypoint, then the robot continues along to the next
waypoint. If the robot has deviated significantly from the targeted waypoint,
however, then it recalculates its path and generates a new set of waypoints from
its current position to the nearest waypoint on the old path, resulting in a new,
merged path that picks up from its current location and resumes with the path
to the target interest point.

The trajectories from the physical robot runs are characterized by much
more jagged lines and paths than those of the simulated runs. This is due to
two factors. First, the motion model in the physical environment, even though
carefully calibrated for each robot platform, is more susceptible to noise, so the
robot needs to adjust its path more frequently. Second, the global vision system
is also susceptible to noise and produces noisy estimates of robots’ positions. If
the position returned by the global vision system is significantly different from
that estimated by the odometry model, then the vision estimate is ignored. In
the trajectory plots for the physical robots, the dotted black lines (inside the
colored paths) show the odometry estimates.

Prediction. Finally, we examine how well our results support our hypothe-
sis that the simulation can be a good predictor of our physical environment.
Although we only executed a small number of runs within each experimental
condition, we believe that the results can be used for predictions, as explained
next. Our analysis of the raw data shows that most results are aligned in rela-
tive terms (e.g., execution time increases with problem size for both physical and
simulation environments), though absolute numbers do not necessarily match.
While the primary reason for lack of precise matching is due to the fact that
the simulation does not mimic the clock time for robot motion, we actually do



not want the simulated robots to move at the same clock speed as the physical
robots. Indeed, we would like the simulation to be able to run experiments more
quickly than the physical environment, so that we can conduct more experiments
in a shorter amount of time. So rather than seek precise matching of absolute
numbers, we would like to see matching in relative, scaled terms.

With this aim in mind, we re-examine our results, as illustrated in Figure 6.
For each metric, we plot the range of the 20 data points collected across all 4
experimental conditions in the physical setting (4 conditions × 5 runs per condi-
tion). This range is illustrated by the height (y−range) of the grey-shaded boxes
in the figure. Then we determine the range across all 20 data points collected in
the simulated setting, and we scale these data to match the range of the phys-
ical data set. This scaled range is illustrated by the unfilled box to the right of
each grey-shaded box: obviously, the heights of these boxes are the same as their
left-hand-side counterparts. Then, we plot the mean and error bars (i.e., mean
± one standard deviation) for the metrics within each corresponding box. The
simulated (sim) mean and standard deviation are scaled within the absolute
range of the physical (phys) data:

scaled sim value =
actual sim value− sim min

sim range
× phys range+ phys min

where:
phys range = (phys max− phys min)

and
sim range = (sim max− sim min)

over all 20 data points collected in each environment.
At least, we would like to see the scaled mean simulation values fall within

one standard deviation of the (unscaled) physical data. At best, we would see
the scaled error bars for the simulation values be completely contained within
the error bars of the unscaled physical data. The “least” case holds for three-
quarters of the metrics: for 100% of values for execution time, for 75% of values
for idle time, delay time and number of avoided collisions, for 50% of values for
deliberation time and for 25% of values for travel time. The “best” case holds
for only a few metrics: 50% for execution time and idle time, and none of the
values for the other metrics. There are a number of cases where the opposite
is true: the physical range falls completely within the scaled simulation range.
Future work will investigate how we might improve the situation so that most
metrics fall within the “best” case. One place to start is by examining the wider
variation for some of the simulation metrics. Intuition says that there should be
less variation in the non-physical environment, for example, with travel velocity.
So we are examining the simulation environment to discern the cause of the
variations.
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Fig. 6. Results plotted on a comparative scale. The experiment IDs describe the param-
eter settings. IDs are of the form 〈starting condition〉〈number of robots〉: C indicates
all the robots started clustered together, D indicates they were initially distributed.
Mean and standard deviation computed over all 5 runs conducted in each experimental
condition are shown. The grey rectangles outline the range of results from the experi-
ments conducted with physical robots. The unfilled rectangles outline the scaled range
of results from the experiments conducted in simulation. See text for more detailed
explanation.



6 Summary and Future Work

This paper tests the hypothesis that metrics collected in simulation can be used
to predict performance in a physical environment. In particular, we have in-
vestigated whether a simulated setting that runs exactly the same allocation
mechanism and robot controller code can reliably predict properties that mea-
sure the performance of physical robots running in the real world. We tested this
hypothesis in parallel experiments—running exactly the same tasks with both
simulated and real robots, and measuring exactly the same metrics. Although
the simulation does not predict the performance of every metric for every ex-
periment, there is encouraging agreement at the qualitative level between the
results obtained in simulation and those obtained with physical robots. We do
not claim that our results will apply to all simulated/physical comparisons, but
rather we make a case for making such comparisons in a systematic way and
suggest metrics and analysis methods that produce promising results for our
setting. Whether these metrics and methods will work for other settings is an
open question.

The work reported here is a first step towards a more ambitious and extended
goal: the comparative evaluation of a broad range of coordination mechanisms
from the multiagent literature implemented on physical multi-robot teams. Our
future work is directed toward this goal. In particular, one of our next steps will
be to adapt the current pseudo-auction mechanism so that bids take account of
the whole path that a robot has to follow. Beyond that, we intend to investigate
the performance of combinatorial auctions for this task allocation problem. In
addition, we are also expanding our investigation of simulated-vs-physical set-
tings by reviewing related work that addresses the same question and assessing
the robustness of our methods and results in comparison with other studies.
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