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Abstract. Approaches to Human-Agent Modeling can broadly be cate-
gorized as the use of agents to emulate (1) the outcome and (2) the pro-
cess of human behavior. The first category can be further sub-divided
into emulating the outcomes produced by individual humans and by
groups of humans. This position paper proposes this categorization as
the core of a unified theory of human-modeling.

1 Introduction

Over the last ten and more years, we have conducted research that has touched
on the idea of human-agent modeling, as the focus of multiple separate projects.
This position paper attempts to bring this work together and formulate a unified
theory of Human-Agent Modeling. We believe that approaches fall broadly into
two categories: (1) the use of agents to emulate the outcome of human behaviors;
and (2) the use of agents to emulate the process of human behaviors. The first
category can be further sub-divided into emulating the outcomes produced by
(1a) individual humans; and (1b) groups of humans.

We consider environments that can be modeled as Markovian, either fully
or partially observable. A human or agent starts in an initial state, S0, and
performs some sequence of actions, a0, a1, . . . , an−1 ∈ A, to arrive at a goal
state, Sg. Our aim is to build agent models of human behaviors that share the
same S0 and Sg, as well as the same intermediate states, S0 → S1 → . . .→ Sg. In
addition, we would like to emulate the sequence of actions taken by human(s), if
we have available information about their actions. We define four different types
of models, at varying levels of abstraction:

I. start-end-state model (the most abstract): the agent mimics the human’s
start state, S0, and end state, Sg

II. all-states model : the agent mimics the human’s complete sequence of states:
S0 → S1 → . . .→ Sg−1 → Sg

III. states-actions model : the agent mimics the human’s complete sequence of

state-action pairs: S0
a0→ S1

a1→ . . .
a(n−2)
→ Sg−1

a(n−1)
→ Sg

IV. action-selection model (the least abstract): the agent mimics not only the
complete set of state-action pairs (as above), but also the human’s decision-
making process for selecting which actions to take in each state



Our work has primarily focused on building models of type III and IV, which are
the emphasis in this paper, though we have done some work constructing type
II models [1]. We have also found that type II models are useful in evaluating
the results of our modeling efforts [2]. (See Section 3.)

The approaches that emulate the outcomes of individual humans’ behav-
iors (category 1a) produce models of type I, II or III. A variety of representa-
tions and machine learning techniques can be used to acquire and store such
models. For example, a Bayesian network [3] could represent the probability
that a particular person executes an action in a given state, and a model could
learn the probabilities associated with each state-action pair. (See Section 2.)
The approaches that emulate the outcomes of groups of humans’ behaviors (1b)
employ a strategy similar to modeling individuals and also produce type I, II or
III models. However, the data used to train the model is based on the collective
behavior of multiple individuals. The collective behaviors may be clustered in
various ways, e.g., according to behavior characteristics or demographics. (See
Section 3.) The approaches that emulate the process of human behaviors (2)
produce type IV models. These tend to be centered on individuals (though these
approaches could model groups where all members exhibit the same, or simi-
lar, processes), so we do not differentiate between “one” and “many” trainers
in this category. The idea is to model the human’s decision-making process for
action selection—not just what the outcome was, but how she made the choice
of action(s) that led to the outcome. (See Section 4.)

Generally speaking, there are two different representation strategies employed
for storing the models produced, each following one of the two historically op-
posing camps from within the Artificial Intelligence community [4]: symbolic
methods that require manual construction of rules which describe behaviors,
versus connectionist methods that require machine learning procedures to evolve
weights or probabilities that guide selection of actions based on input states. The
first strategy involves engineering a policy for an agent to follow when selecting
an action given a state, whereas the second involves learning the policy3. The
more successful applications of the first strategy stem from work done by be-
havioral specialists, such as developmental psychologists, in which they observe
human subjects engaging in activities and then create theories about the sub-
jects’ behaviors by analyzing the observations made. Following this procedure,
computational models can then be built that reproduce the subjects’ behaviors.
While the second strategy could also be based on theoretical models from the
literature, the connectionist methods more typically skip that step and learn
directly from quantitative or categorical data that is collected during a period
of human subject activity. For example, a human expert could explain to a pro-
grammer how she plays the game of Backgammon and the programmer could
engineer a rule set that encodes the expert’s behavior; or a connectionist pro-
gram (e.g., neural network) could learn how to play Backgammon by playing
many games against itself [5], another computer player or a human opponent,
and adjusting its weights as it plays.

3 Note that the second also involves engineering the connectionist representation.



(1a) modeling (1b) modeling (2) modeling
representation outcomes of outcomes processes

strategy individuals of groups

symbolic SimEd, type IV [6] SimEd, type IV [7] MBTI, type IV [8]

connectionist Tron, type III [9] Tron, type III [10]
robotics, type III [11] SimEd, type II & III [2]

Table 1. Categorization of approaches to human-agent modeling for projects discussed
in this paper: SimEd (Sections 2 and 3); MBTI (§4); Tron (§2 and §3); robotics (§2).

Our work has primarily focused on using connectionist strategies, though
we have also explored symbolic strategies. Table 1 illustrates how some of our
different projects, undertaken since 1997, fit within the categorization described
above. The remainder of this paper highlights these examples; and we close with
a brief discussion of ongoing and future work.

2 Modeling the outcomes of individuals’ behaviors

In 1997, we introduced a simple human-vs-agent video game inspired by the
movie Tron and demonstrated one of the first Internet-based examples of collec-
tive intelligence [12]. In our Tron game, both players move continuously within
a toroidal arena, each leaving an impenetrable trail marking its path (neither
player can cross these trails). The trails do not decay, so eventually the arena fills
up with “walls” and it becomes hard to find safe moves. The agent player has
sensors that measure the distance to the nearest obstacles. Both players have a
choice of 3 actions: turn left, turn right, or go straight. The goal is to maximize
the length of an episode, by avoiding crashing into walls and staying “alive”
longer than the other player. We trained agents, controlled by genetic programs,
to play Tron by engaging in a co-evolutionary learning process that matched
agents against humans. While this experiment did not model human behaviors
directly, the game logs were mined in subsequent experiments, described next.

Follow-on work [9] introduced the idea of using logs of humans’ actions, col-
lected during the game play mentioned above, to train agent-based models of
the human players. These “trainees” were represented as neural networks with
inputs corresponding to agents’ sensors and outputs corresponding to actions.
The training process reconstructed previously-played games, following the moves
of both players recorded in game logs. The human player is designated as the
“trainer”, and the “trainee” network tries to replicate the human’s actions. Be-
fore each action taken by the human trainer, the current state of the game arena
is input to the trainee agent’s network, which predicts which action to take.
Then the prediction is compared to the trainer’s action recorded in the log. If
the actions match, then the training sequence proceeds to the next move in the
game. If the actions do not match, then the trainee’s network weights are ad-
justed (using back-propagation [13]), in proportion to the prediction error. This
process continues until the trainee can predict its trainer’s actions with accuracy.



We produced 58 different human-trained networks in this manner. For com-
parison, we produced a control group of networks trained by deterministic agents
(i.e., players that always perform the same action in a given state). To evaluate
the trainees, we ran test games pitting the human-trained networks, their train-
ers, the control group and their trainers against a common group of deterministic-
behavior opponents (different from the control group). In addition, we also ran
test games pitting the common group against a set of random players (i.e., play-
ers that select their actions randomly). We looked for correlation between the
actions selected by trainee-trainer pairs, as well as pairs between the trainees
and the random players. The correlation between trainees and their trainers was
significantly higher than the correlation between trainees and random players,
for both types of trainees. The correlation for trainees that trained on determin-
istic players was higher than for those that trained on human (non-deterministic)
players. This is not unexpected, since humans naturally produce noisy behav-
iors. We did some comparative analysis of the variance in the trainees’ behavior
patterns, next to that of the human trainers, and we found that the trainees
were able to filter out spurious actions of the humans and behave less erratically
while still exhibiting a comparable range of normal behaviors.

After the initial Tron work, we subsequently applied this method, training
agents from game logs, to other environments, including educational games [14].
Current work is applying this technique to modeling humans playing more com-
plex games (Tetris [15] and Poker [16]) and to modeling behaviors of humans
performing a task in which they assign keywords to natural language data sets
that discuss medical conditions. In addition, we are applying this approach using
a learning from demonstration algorithm [17] in a robotics domain, facilitating
a human teacher to train a robot to avoid obstacles [11].

The SimEd classroom project [6] involves emulating the outcomes of humans
in a simulated learning environment in which different types of behaviors are
exhibited by agent-based models of students and teachers. The knowledge being
acquired by these simulated students is an abstract set of concepts, represented
symbolically: {c0, c1, . . . cn−1} ∈ C. A state in this environment is defined by
the subset of concepts (⊆ C) that the simulated teacher has presented and the
simulated student has acquired. (The teacher agents are assumed to “know” all
the concepts in C.) The teacher performs two tasks: act, by selecting a concept
ci ∈ C to present to the student, with the ultimate goal of helping the student
acquire all elements in C; and react, by evaluating the student’s response to ci.
There are n = |C| choices of action and 2 choices of reaction (“right” or “wrong”).
In between, the student acts by selecting a response to ci which results in either
acquiring ci or not, or acquiring some portion of ci. The student’s action choices
are abstracted into degrees of correct knowledge about the current ci, depending
on the value of a learning rate parameter.

We applied a symbolic approach to modeling the behavior of individual hu-
mans in the SimEd classroom project [6]. Agent models of students and teachers
were derived from theories of teaching and learning described in pedagogical lit-
erature (e.g., [18–20]). Three different teacher behavior models were compared.



In the lecture model, the teacher agent selects new ci’s regardless of students’
progress. In the lecture-feedback model, the teacher selects new ci’s when the
majority of students had acquired previously-presented cj ’s (i 6= j). In the tuto-
rial model, the teacher selects customized ci’s for students, based on individual
progress with previously-presented cj ’s. The student model was derived from
the trilogy of mind theory of knowledge acquisition [18], where the probability
of action selection is computed according to the student’s current set of beliefs
(cognition) and attitude (emotion and motivation). The simulation results were
not surprising: the tutorial model produced the best learning outcomes, in terms
of acquisition of more concepts by more students; and students with higher cog-
nitive ability and stronger motivation to learn acquired more concepts.

3 Modeling the outcomes of group behaviors

One of our primary motivations for investigating human behavior modeling is
not to mimic individuals, but rather to emulate groups of humans. We analyzed
data collected in the first 15 months of the Tron experiment, examined the
“win rates” of the human players (i.e., the number of games won divided by
the number of games played) and categorized them into clusters based on win
rate (e.g., humans who win 10% of their games, 50%, 90%, etc.). We found that
the distribution of clusters remained relatively constant over time, despite the
steady increase in the number of different people playing games on the site; i.e.,
although the number of players increased, the proportions of “terrible” (10% win
rate), “fair” (50% win rate) and “expert” (90+% win rate) players remained the
same. We wanted to see if we could train agents to imitate each group—could we
create a terrible, a fair and an expert agent player? If we could, then we would
have a suite of players who could be matched against humans who were learning
to play and provide a scaffolded series of opponents to aid human learners.

We repeated the process used for training on individuals’ data, but instead
of using data from one human, we clustered human players based on their win
rates and used the combined game logs from all the humans in the same cluster
as input [10]. These training data sets were naturally larger than those used for
training on individuals’ data, and the results were better. Despite the fact that
the training data was a merged set of actions from multiple people’s games, the
result was a suite of agents that could reliably play at the levels matching their
trainers. We repeated this process within the educational games environment
mentioned above [10, 14]. The results surpassed those from Tron because the
educational games were in static environments and the state space was smaller.

Subsequently, also part of the SimEd project, we applied the technique to
modeling children’s behaviors in an interactive educational assessment environ-
ment [2] and experimented with different ways of grouping the human trainers.
The domain, an educational assessment instrument, consisted of a sequence of
questions and was administered to elementary school children in order to screen
for learning disabilities. The assessment was adaptive: after an initial fixed se-
quence, questions were chosen dynamically, based on students’ answers. In the



data we studied, students responded to a subset of 7-8 questions, out of 94. A
student’s pattern of right and wrong answers governed her “trajectory” through
the assessment landscape (i.e., the subset and sequence of questions answered).

We built agent-based models of students from logs that recorded 117 stu-
dents’ answers to questions in the assessment, and experimented with two dif-
ferent measures for clustering the training sets. One method was to create a 94-
element feature vector in which each question was encoded as “right”, “wrong” or
“not seen” and classify students based on the Euclidean distance between feature
vectors. The second method was to measure the distance between trajectories in
the landscape using the Hausdorff geometric distance measure [21]. We applied
a hierarchical clustering technique to both measures, generating two different
partitions of student transaction logs. Then we trained agents to emulate the
outcomes of the students in each group. The agents were represented using prob-
abilistic influence networks [3], and were evaluated by deploying in a simulated
version of the educational assessment and logging answers. We compared the
correlation between trainee-trainer pairs resulting from each clustering measure,
indicating how closely the trainees replicated the question-answering behavior of
their trainers. Our results showed that the trajectory-based clustering produced
superior correlation to the feature-based clustering. We believe this is because
the trajectory method takes into account the sequence and dependencies between
questions, whereas the feature method views questions independently.

In follow-on work to the SimEd classroom project, we simulated learning in
groups of human students [7]. Based on multiple pedagogical theories of group
learning, we engineered a model in which simulated students are presented with
concepts (as in [6]) and interact in groups in order to acquire the concepts.
We experimented with different compositions of “low” and “high” ability learn-
ers in groups and different reward structures (“individual”, “competitive” and
“cooperative”), to determine the combination that produced the best results in
terms of acquisition of more concepts by more students. The competitive and
cooperative reward structures assigned the same reward to all members of the
group based on how the group performed in relation to other groups. The re-
sults demonstrated that cooperative reward structures help low ability learners
progress as part of a heterogeneous group more rapidly than other reward struc-
tures or homogeneous group assignments. This mirrors reports in pedagogical
literature that describe observations of human classrooms.

4 Modeling the process of individuals’ behaviors

Although we have primarily focused on constructing models that emulate the
outcomes of human behaviors, some of our more recent work has involved emu-
lating the process of humans selecting actions (i.e., model type IV). In our MBTI
project [8, 22], we apply the Myers-Briggs Type Indicator theory of human per-
sonality [23] to agents acting in a simple artificial life environment [24]. This the-
ory defines human personalities along 4 axes: extroversion versus introversion;
sensing versus intuition; thinking versus feeling; and judging versus perceiving.



Each of these dichotomies influence how humans interpret input, interact with
others and make decisions. By recognizing a tendency for one extreme within
each dichotomy, the MBTI theory classifies people into sixteen different “person-
ality types”. In our simulated environment, we created agents of each type, who
make different action-selection decisions according to their personality type. Our
results demonstrate different outcomes that reflect those personality types. For
example, agents with introverted personality types, who lose energy when in-
teracting with others, are less efficient in completing tasks in densely populated
environments as compared to sparsely populated environments.

5 Summary

This position paper has proposed a unified theory of human-agent modeling that
defines two major categories of approaches: emulating the outcome of human be-
haviors and emulating the process of human behaviors. The outcome-based ap-
proaches can be further sub-divided into models based on individuals or groups
of humans. Four types of models have been described, ranging in levels of ab-
straction from the most coarse, where only start and end states are modeled, to
most specific, where the process of action-selection is mimicked. Two techniques
for model representation were discussed: symbolic and connectionist. Examples
of each were highlighted from previous and ongoing projects.

A number of key lessons have been learned. First, training agents on hu-
man transaction logs results in controllers that filter out anomalous actions and
produce more consistent patterns of behavior, i.e., with less variance in action
selection than human trainers. Second, constructing computational models from
theories suggested in literature requires careful validation efforts, which are not
necessarily easy to design and may be controversial. Finally, creating graphical
representations of state and action landscapes opens the door to a wide range
of methodologies that can be used to compare and assess behavior models.

Current efforts involve deeper exploration of this unified theory by reviewing
a wide range of behavior modeling projects and assessing the broader applica-
bility of our categorization. As well, application of the theory to more complex
domains—some mentioned here—is underway. This includes investigation of a
mixed-model-type approach where models of types III and IV are combined by
overlaying personality type on agents in the SimEd and gaming environments.
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