In Proceedings of the Seventh Intemational Workshop on Agents
and Data Mining Interaction (ADMI), Taipei, Taiwan, May 2011.
Post-proceedings in Springer LNAI 7103.

Toward a methodology for agent-based data
mining and visualization

Elizabeth Sklar'2, Chipp Jansen'3, Jonathan Chan' and Michael Byrd?

! Brooklyn College, The City University of New York, USA
2 The Graduate Center, The City University of New York, USA
3 Hunter College, The City University of New York, USA
sklar@sci.brooklyn. cuny. edu, chipp@chipp. org, jonmchan@gmail. com, mbyrd1 @gmail. com

Abstract. We explore the notion of agent-based data mining and vi-
sualization as a means for exploring large, multi-dimensional data sets.
In Reynolds’ classic flocking algorithm (1987), individuals move in a
2-dimensional space and emulate the behavior of a flock of birds (or
“boids”, as Reynolds refers to them). Each individual in the simulated
flock exhibits specific behaviors that dictate how it moves and how it
interacts with other boids in its “neighborhood”. We are interested in
using this approach as a way of visualizing large multi-dimensional data
sets. In particular, we are focused on data sets in which records contain
time-tagged information about people (e.g., a student in an educational
data set or a patient in a medical records data set). We present a system
in which individuals in the data set are represented as agents, or “data
boids”. The flocking exhibited by our boids is driven not by observation
and emulation of creatures in nature, but rather by features inherent in
the data set. The visualization quickly shows separation of data boids
into clusters, where members are attracted to each other by common
feature values.

1 Introduction

We are motivated to explore the notion of agent-based data mining visualiza-
tion, taking inspiration from the Artificial Life and Information Visualization
communities. Advances in computer graphics, processor speed and networking
bandwidth over last decade have made possible the application of dynamic tech-
niques for information visualization that were previously limited to high-end
graphics laboratory settings. In addition, the rapid rise in popularity of certain
types of data visualization environments, particularly those from the Geographic
Information Systems (GIS) community, have made commonplace otherwise ob-
scure techniques for examining vast multi-dimensional data sets. Google Farth
[2,6,8] is one example, which has brought to the masses the notion of zoomable
interfaces and allowed everyday computer users to explore 3-dimensional geo-
graphic data sets facilitated by, what are now considered to be, standardized
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controls. Our work takes advantage of these trends by hypothesizing that when
any multi-dimensional data set is projected onto 2 or 3 dimensions, it can be
explored as if it were a geographic landscape. Such “data landscapes” could be
studied dynamically in interesting ways if points in the landscape are represented
as software agents that move in response to various stimuli.

The work presented here develops this idea, with the long term goal of provid-
ing a participatory agent-based data mining and visualization system in which
the user and the system collaboratively explore a data landscape. Classical statis-
tics are often fine (and the right choice) when the user has some notion of what
is in their data set and how they want to analyze their data. Looking for a bell
curve in a data set of student grades is an example where a standard statistical
method, like computing mean and standard deviation, is an appropriate choice.
Using K-means [9] when clustering data into a known number of groups is an
example where a standard machine learning method is appropriate. But when
the number of clusters and even the selection of features on which to cluster the
data are unknown a priori, other techniques must be investigated. Our hypoth-
esis is that a participatory system in this type of situation can take advantage of
superior human skills for quick visual understanding and intuition, facilitating
a user to easily identify and nudge an evolutionary data mining process into a
desired direction.

This paper is organized as follows. Section 2 describes the related work in
this area, which was inspired by seminal work on “flocking boids” [16]. Sections
3 details our approach. Section 4 presents results from applying our approach to
a sample data set. Finally, we conclude in Section 5 with summary remarks.

2 Related Work

In 1987, Cliff Reynolds [16] produced the classic work on flocking in artificial sys-
tems. Reynolds’ model focuses on graphical aspects, and the aim was to produce
a realistic (from a graphical standpoint) simulation of a group of identical agents
(which Reynolds calls “boids”). Each agent is given the same behavioral rules,
which includes instructions for how to react to others in an agent’s “neighbor-
hood”. These interaction instructions consist of three independent rules. First,
there is a separation rule, which implements collision avoidance, preventing the
agents from bumping into each other. Second, there is an alignment rule, which
causes agents to move at the same velocity and heading as those around them.
Third, there is a cohesion rule, which encourages agents to gravitate towards a
common center. When put together, the composite set of agents exhibits emer-
gent group behavior that looks like flocking—in the same way that schools of
fish or flocks of birds or herds of land animals move together. This work has
proven to be highly influential and has inspired most of the subsequent research
in the area of artificial flocking.

Proctor and Winter [15] developed the notion of information flocking, about
10 years after Reynolds’ work. Their aim was to visualize patterns of behavior
of users visiting web sites. They simulated artificial “fish” and associated a fish



with each user, mining users’ clickstreams to provide input to their simulation.
A wuser clicking on a URL was interpreted as interest in the topic(s) displayed
on the page. A matrix of user interests was updated, and the fish responded by
grouping together—showing users who shared similar interests.

Moere [11] provides a comprehensive overview of decentralized data visual-
ization work conducted in the two decades since Reynolds’ original work. He
divides the work in the field into three categories: information particle anima-
tion; information flocking; and cellular ant methods. The first category involves
simulating a group of information particles, or “infoticles” (i.e., agents), in three-
dimensional space. Agents react to forces in the system, moving in response to
them. The forces can emanate from static points in the agents’ artificial land-
scape, acting as fixed point attractors (or repellers), as well as from dynamic
points—other agents. The forces influence the velocity and direction of move-
ment of each agent. With an infoticle, data values are assigned to each agent.
The forces acting on an agent are calculated according to the similarity (or dis-
similarity) of the agents’ data values in relation to those of other nearby agents
or fixed-point attractors in the landscape.

The second category, information flocking, describes the method introduced
by Proctor and Winter [15], discussed above. Picarougne et al. [12] extend the
work of Proctor and Winter by introducing the notion of an “ideal” distance
between agents that is proportional to the difference in feature values between
the agents. They compare to the K-means clustering method and state that
their results are similar. Another example that extends Proctor and Winter’s
work suggests using the visualization in tandem with other algorithms for data
classification [1]. Moere [10] offers a nice extension to the Proctor and Winter
work by applying the method to time-varying datasets and using financial stock
market data as an example. The data values (e.g., prices or “quotes” of a given
stock) are represented by agents, and the agents’ values change over time. Moere
introduces two additional behavior rules: data similarity, where agents stay close
to others with similar data values; and data dissimilarity, where agents move
away from others with different data values. The method highlights changes in
“data behavior”—as data values change over time, agents that have similarly
changing data values end up clustering together.

The third category combines ideas from artificial ant systems [4], ant for-
aging [3] and cellular automata [19]. The general idea is that artificial agents
(“ants”) move around a two-dimensional grid world and collect “food”—i.e.,
data. The aim is to bring like pieces of data together, emulating the way that
ants gather food particles and deposit them in shared nests. The agents’ move-
ment is constrained by cellular-automata-like rules in which they respond only to
neighboring grid cells. While an interesting alternative, many comment that this
approach takes more time to reach a solution than other methods. The reason
is that the agents’ movements are constrained (by the cellular automata rules),
and so even if an agent “knows” where it is going, it still has to find a path to get
there. The advantage, however, is that forcing the agent to explore an indirect
path will lead it to encounter other agents and new data (food) sources, which



may eventually result in a more robust solution (even if it takes longer to find).
Handl and Meyer [7] review ant-based clustering algorithms, comparing results
of different implementations and discussing approaches from an optimization
perspective.

Cui et al. [20] employ a flocking-based algorithm for document clustering
analysis. Each document object is represented as a “boid” and projects the
document’s TFIDF* vector onto a two-dimensional space. The authors com-
pare their flocking-based clustering algorithm with K-means clustering and Ant
clustering. They found that the flocking algorithm ran faster than the Ant al-
gorithm, while K-means ran the fastest. However, the K-means method requires
an a priori estimate of the correct number of groups, whereas the flocking and
Ant-based methods do not. This makes the flocking algorithm the better choice
for a dynamically changing data set, like the one used by the authors.

Picarougne et al. [13] describe a biologically inspired clustering algorithm,
called FClust, which applies similar, but not identical, techniques to those of
Proctor and Winter. The authors also model agents as representations of data
points moving in a two-dimensional landscape. However, instead of applying
three forces to the agents’ motion, the authors apply two forces: one that at-
tracts agents with similar data values and one that repels agents with dissimilar
data values. They determine experimentally the threshold for similarity, show-
ing visually that different threshold values produce different clustering results,
as one would expect. They apply their method to several data sets and compare
results to K-means clustering methods. They also describe a component of their
system referred to as “interactive clustering” in which a user can select and la-
bel data elements on a visual display and the system will perform clustering on
the user-selected classes. The authors define an “entropy” measure (inspired by
Shannon [17]) for evaluating the stopping condition for the system.

The work we present in the remaining sections has been inspired and in-
formed by these and other examples, all of which were found primarily in the
Artificial Life and Information Visualization literature. Our approach is most
similar to that of Moere [10] and Picarougne et al. [13]. However, we take an
agent-based perspective. Each agent in our system can only compare its data val-
ues to others in its geographic neighborhood, much as a robot in a multi-robot
team can only respond to teammates that are within range of its visual or range
sensors or communication network. Where Moere and Picarougne et al. stress
two behavior rules (essentially data similarity and dissimilarity), we stick with
Reynolds’ original three behavior rules (separation, cohesion and alignment);
and we introduce an additional meta-level flocking step in which groups that
are similar emit an attractive force and tend to move towards each other. The
details are described in the next section.

4 Term Frequency, Inverse Document Frequency—a common metric used in Natural
Language Processing (NLP)



3 Approach

Our approach is built on the information flocking paradigm described in the
previous section, with modifications highlighted below. We associate a “data
boid”, or agent, with each record in an n-dimensional data set (i.e., a data set
with n features in each record). In our visual environment, the agent moves
around a two-dimensional geographic landscape, and its position is influenced
by the relative values of its data features compared with those of its neighbors.
Iterating over a number time steps, or “frames”, we animate the agents by first
applying the three standard flocking rules, then grouping agents based on their
feature value and geographic proximity, next executing a meta-flocking step that
pulls similar groups together, and finally applying a braking factor (described
below) as clusters of like agents converge.

The standard flocking procedure involves computing vectors representing
three forces acting on each agent, followed by combining the three forces us-
ing a weighting scheme. The three force vectors are computed as follows:

— Separation. A steering vector is computed that points away from agents in
the neighborhood with dissimilar feature values:

sep = %Zdi(P—Pi) (1)
i=1

where n is the number of agents in the neighborhood within a specified fea-
ture distance (A), d; is the geographic distance to neighbor 4, P is the (z,y)
position of the agent performing the computation, and P; is the (z,y) posi-
tion of neighbor 3.

— Cohesion. A steering vector is computed that points toward the center of
the group of agents in the neighborhood with similar feature values:

1 n
h=-S5"P 2
co n; (2)

where n is the number of agents in the neighborhood within a specified fea-
ture distance (A) and P; is the (z,y) position of neighbor i.

— Alignment. A velocity vector is computed to match the average speed and
heading of agents in the neighborhood with similar feature values:

1 n
li = — Vi 3
ali n; (3)

where n is the number of neighboring agents within a specified feature dis-
tance (A) and V; is the velocity of neighbor .



The vectors are weighted and summed to update the agent’s position:
velocity = - sep + a- ali + - coh (4)

The weighting scheme amongst the three vectors is important, and there is a
delicate balance between them. For the results presented here, we used weights
of vy =1.5, a =1.0 and v = 1.0.

The standard flocking algorithm only considers geographic distance (d) be-
tween agents, whereas we use geographic distance to determine an agent’s neigh-
borhood and distance in feature space (A) to determine whether agents should be
attracted to or repel their neighbors. The distance in feature space is computed
as follows. Multi-featured data sets frequently contain a mixture of categorical
and quantitative types of features. We compute the distance between individual
features, based on their type and normalized to [0...1] (where 0 is most similar
and 1 is most dissimilar), and then calculate the average over all features. The
distance between two categorical feature values is:

5(04,[%) = (ai == bi ?70: 1) (5)

where a; and b; represent the values of the i-th feature for agents a and b,
respectively. The distance between two quantitative feature values is:

|la; — bi

6(ai,bi) = (6)

max;
where maz; is the range of possible values for feature i. The overall feature
distance between two agents is thus:

Z?:l 6(ai7 bl)

n

Ala,b) = (7)

After the standard flocking rules are applied to all the agents, a grouping step
takes place, followed by a meta-flocking step. Grouping is an organizational step
in which the agents are partitioned into virtual groups based on their locations
in geographic space. This is done using a recursive algorithm in which each agent
looks at its neighbors (other agents within a fixed physical distance), and those
neighbors look at their neighbors, and so on, adding to the group all neighbors
(and neighbors’ neighbors, etc.). Agents’ positions do not change during the
grouping step.

The meta-flocking step pulls together groups that have similar feature values.
For each group, a set of feature values is calculated that represents the center of
the group in feature space. For quantitative feature values, the center is the mean
over all group members. For categorical feature values, the center is the mode
(i.e., most popular) over all group members. A pairwise comparison is made
between all groups’ feature centers. A cohesion steering vector for the group is
computed that points toward the geographic center of mass of other groups with
similar feature values:

1 n
cohg = - Z M; (8)
i=1



where n is the number of groups within a specified feature distance (A) and M; is
the (z,y) position of the center of mass of group i. Note that this is different from
the standard (agent-level) cohesion rule for two reasons. First, it only takes into
account the feature distance between groups and does not use the geographic
distance. Second, it compares with every group in the system, not just groups
that are within close graphic distance proximity.

Finally a braking factor is applied to all members of groups whose feature
values within the group are similar. As group membership settles, the system
converges and the agents belonging to settled groups move more slowly and
eventually halt.

As the clusters of agents evolve, the system computes two metrics to assess
how the process is performing;:

— pctGood computes the percentage of groups that fall within a pre-specified
“goodness” threshold. The aim is for this value to converge to 1.0. The
goodness of a group is a measure of the variance in group members’ feature
values. A goodness value close (or equal) to 0 indicates that the group mem-
bers are closely matched; a higher goodness value indicates a more diverse
group. Goodness is calculated as:

n

goodness = Z Z a(f)+ Z(l - match(f)) 9)

“ n
=1 \feQ fec

where n is the number of agents in the group, @ is the set of each agents’
quantitative features, C' is the set of each agents’ categorical features, o(f)
is the standard deviation of (quantitative) feature f across all agents in the
group, and match(f) is the number of agents in the group with (categorical)
feature f matching the mode for that feature in the group.

— pctOverlap computes the percentage of groups that have overlapping feature
values. Since the system determines group membership dynamically, based
on which agents have come within small graphical distances of each other
while they float around in space, there is no guarantee that multiple groups
with the same feature values will not appear. The overall aim is to find
the minimal set of groups that have different feature values, since it is not
desirable to have different groups that overlap in feature space. The aim is
for this value to converge to 0.0.

4 Experiments and Results

We implemented our approach in a prototype system, developed using Process-
ing [14]. The system can run in an interactive mode, where the user selects
features on which to cluster, and the system responds in real-time. The user
can change feature selection during clustering, and the system will adjust. To
assess the efficacy of our method for clustering, we ran a series of experiments in



(a) 1 categorical feature; 293 frames (b) 2 categorical features; 1000 frames
pctGood = 1.0, pctOverlap = 0.0 pctGood = 0.92, pctOverlap = 0.08

(c) 1 categorical, 1 quantitative; 1000 fr. d) all 5 features; 1000 frames
pctGood = 0.83, pctOverlap = 0.08 pctGood = 0.99, pctOverlap = 0.0

Fig. 1. Screen shots at end of 4 different runs, each clustering on different sets of
features, as indicated above.

a batch mode, using a 5-dimensional sample set of university enrollment data,
gathered over a 4-and-a-half-year period. The data was partitioned into subsets,
each representing one term; on average, there are 375 data records per term.
Each record represents an instance of a student taking one class in a specific
term. The fields in each record are: a unique identifier for the student (cate-
gorical feature), a course number identifying which class was taken (categorical
feature), the student’s gender (categorical feature), a numeric code indicating
the student’s ethnic origin (categorical feature), and the grade earned by the
student in the class (quantitative feature). A subset of data for one term con-
tains all the students who took classes in that term. A student who took more
than one class in a given term is represented by multiple data records.

Figure 1 contains screen shots from 4 representative runs of the system,
captured at the end of each run. The end of a run is either the point at which
pctGood = 1.0 and pctOverlap = 0.0 or a maximum number of frames have
elapsed. We used 1000 as the maximum number of frames for the runs presented
here. The figure captions show the number of frames elapsed for each run, and
the final values of pctGood and pctOverlap. Figure 2 shows the improvement
in pctGood and pctOverlap rates through the course of each corresponding run.
When clustering on one categorical feature value, the system quickly converges
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Fig. 2. Improvement in evolution metrics: pctGood and pctOverlap

to the correct solution (in 293 frames); whereas in all the other cases, the system
timed out after 100 runs. Even so, the percentage of “good” groups was high,
ranging between 83% and 99%.

At the end of each run, we computed two scores to determine how well
the clustering process worked: within cluster score and between cluster score.
The “within cluster” score measures the disparity of the feature values in the
cluster. The goal is to minimize the “within” cluster score and to maximize the
“between” cluster score. The “within” cluster score is determined by calculating
the feature distance (equation 7) from the representative center of the group in
feature space (see the description of the meta-flocking step in Section 3) to each
member of the group. The “between” cluster score is determined by calculating
the average over all pairwise feature distances between representative (feature)
centers of each group. Using these two metrics, we compared our results to two
standard clustering algorithms from the data mining literature: K-means [9] and
Cobweb [5]. We ran these algorithms using WEKA [18] on our same data set.

Figures 3 and 4 compare the results of our agent-based data visualization
method to K-means and Cobweb. Each vertical bar represents an average over
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Fig. 4. “Between Cluster” score comparison

multiple runs®, clustering on different combinations of features. The leftmost bar
shows the average results over all combinations of features. The next 5 bars show
the average results when clustering over 5, 4, 3, 2, and 1 feature(s) (in aggregate,
regardless of which particular features). The remaining 31 bars show average
results when clustering over specific combinations of all the various features.
The shaded bands within each bar represent the distribution (by percentage) of
best results for each clustering method. In general, K-means produces the best
results for “within” cluster score more frequently than the other methods. For
“between” cluster score, the results are split between Cobweb and our agent-
based data flocking method. Table 1 quantifies the error rate for each method
when it was not categorized as the “best” (see table caption for an explanation

5 The number of runs varied between 4 and 31, depending on the number of features
being clustered.



K-means|cobweb| advis

within cluster|| 0.87%|38.23%47.39%

between cluster 1.58%| 2.18%(1.12%

Table 1. The values in the table are are computed as follows: for each method (shown

in columns), when it did not produce the best score, the error is calculated as the

difference between that method’s score and the best score; this error is expressed as a
percentage of the best score in order to give a sense of the proportion of the error.

of how the error rate is computed). K-means produces the smallest error rate
for “within” cluster score, whereas our method (labeled “advis”) produces the
smallest error rate for “between” cluster score.

5 Summary

We have described preliminary work in the development of an agent-based data
mining and visualization method for clustering multi-dimensional data sets. Our
technique extends early work in the area of information flocking and introduces
several strategies that help the system converge on a clustering task. The first
strategy involves “grouping” and “meta-level” flocking steps in which groups of
data boids are identified and nudged toward each other, based on the similarity
between feature values amongst the groups. The second strategy is a “braking”
adjustment that causes the data boids to decrease their velocity as the system
converges on good clusters. Experiments were conducted on a sample data set,
showing promising results for “between cluster” scoring as compared with stan-
dard techniques. The advantage that our method has over standard techniques
is the ability to adapt during clustering to changes in clustering criteria.

We plan to apply evolutionary machine learning techniques to evaluate var-
ious parameter settings, including weights (equation 4), “goodness” threshold
and geographic neighborhood distance, in order to improve clustering results.
Eventually, the aim is for the system to dynamically explore various combina-
tions of features while clustering, learning to converge on the set of features that
offer the best cluster scores. In addition, we also will apply our method to real-
time data streams, where the feature values in the data set change while the
clustering process is occurring. Because our method is highly dynamic, it should
be able to respond in near real-time (depending on the relative speed at which
new data comes in compared to the time it takes clusters to form).
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