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Abstract

This paper presents a discussion of coordination proper-
ties within populations of geospatially distributed embodied
agents. We define two axes:interaction mechanismsandpop-
ulation diversity; and we present a new framework designed
for exploring the relationship between values along these axes
and the efficiency of solutions for a set of related tasks, e.g.,
foraging, resource allocation and area coverage.

Introduction
There are many issues that arise in coordinating populations
of geospatically distributed agents. This paper presents an
overview of properties of coordination in an embodied mul-
tiagent system and a framework for examining them. We
consider a class of tasks in which a physically dispersed,
large group of heterogeneous agents, if well coordinated,
can achieve better results than a single, multi-capable agent
or a small group of agents possessing mixed capabilities. By
“large”, we mean 50 agents or more. By “well coordinated”,
we mean that the results achieved are better with a coordina-
tion mechanism than without one (i.e., random acts of agent
kindness).

The termcoordinationis discussed from many perspec-
tives within the embodied multiagent (or multi-robot) liter-
ature. Cao, Fukunaga, & Kahng (1997) offer a broad sur-
vey of coordination in multi-robot systems, provide histori-
cal perspectives and theoretical background, and categorize
their findings along five “research axes”: group architec-
ture, resource conflict, origin of cooperation, learning and
geometric problems. Kalra, Stentz, & Ferguson (2004) out-
line a spectrum of tasks, from “tightly” to “moderately” to
“loosely” coordinated, providing a dimension in which to
consider the necessity for robots to coordinate in order for
a task to be accomplished successfully. Farinelli, Iocchi,
& Nardi (2004) propose a two-dimensional taxonomy and
parameterization for multi-robot systems, based on coordi-
nation — cooperation (yes or no), knowledge (aware or un-
aware), coordination (weak to strong) and organization (cen-
tralized to distributed) — and system-level features (com-
munication, team composition, architecture and size).
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In the non-embodied multiagent systems (MAS) world, re-
searchers are primarily concerned with understanding theo-
retically how systems might best coordinate, and they de-
sign simulated systems and mechanisms that approximate
(or ignore) the physical world in order to demonstrate, test
and evaluate theories. Conversely, in the multi-robot (MRS)
arena, most researchers are more focused on building sys-
tems that operate robustly in the physical world; they are
primarily concerned with “making it work” and frequently
rely on highly engineered or emergentad hocmethods. In
the long term, we are interested in bridging the gulf that di-
vides theoreticalMAS and appliedMRS approaches to coor-
dination.

Here, we concentrate on two axes:interaction mecha-
nismsand population diversity. It is our contention that
there exists a dependent relationship between the diversity
of a population and the level of interaction amongst pop-
ulation members for achieving coordinated solutions. Our
theory is that heterogeneous populations which make proper
use of interaction mechanisms to coordinate will perform
as well or better than homogeneous populations of multi-
capable agents. Indeed, there are many real-world applica-
tions where large populations of homogeneous agents are
impractical due to financial or logistical constraints; thus, it
is important to find efficient means for coordinating popula-
tions of heterogeneous agents.

Our longterm goal is to understand how the complexity
along each of these axes affects efficiency within the solu-
tion space. In this paper, we outline some ideas in this area
and describe a framework which we have constructed to ex-
plore them. The paper is organized as follows: first we detail
several types of interaction mechanisms, of varying com-
plexities; second, we explain factors relating to population
diversity. Then, we describe our framework and newly con-
structed prototype simulation environment designed for ex-
perimentation. Finally, we discuss current and future work.

Interaction mechanisms
Coordination is enabled via interactions between agents,
which can be either implicit or explicit; an interaction mech-
anism is used to facilitate any resulting coordinated activity
on the part of the agents in a system. We use the termco-
ordinated plan formationto refer to the three-part process
that occurs between an agent receiving sensory information



and performing actions, as shown in Figure 1. Interactions
are interpreted and considered before an agent commits to
a plan of action. Implicit interaction refers to mechanisms
where environmental cues serve to pass information from
one agent to another. Explicit (or intentional) interaction
refers to mechanisms where agents purposely and purpose-
fully send messages to one another. Note that in dynamic
environments, agents must be able to “walk and talk at the
same time”, i.e., they must be able to sense, plan, interact
and act in parallel.
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Figure 1: Coordinated plan formation

Coordinated plan formation can occur using either a cen-
tralized, distributed or hybrid approach. In a centralizedap-
proach, one “leader” agent determines a plan for all the other
agents; thus theconsiderstep in Figure 1 is effectively elim-
inated, as all non-leader agents automatically “commit” to
the leader’s plan without deliberating. In a decentralized, or
distributed, approach, each of the individual agents formsits
own plan. Agents may receive input from other agents that
might inform their local decision making, but the final de-
termination of what plan to commit to is done at the level
of the individual agent. Hybrid approaches, as the name
suggests, combine the two. The most common types of hy-
brid approaches are market mechanisms, such as auctions, in
which agents consider plans locally, make decentralized de-
cisions about what they want to do, and then submit “bids” to
a central decision-making facility which determines which
bids to accept and sends assignments back to the bidding
agents. If an agent’s bid for a plan is accepted, the agent
is bound to commit to that plan. While some may argue
that this, too, is a centralized approach, we contend that the
distinction that divides plan consideration (bidding) from as-
signment of plans is important because there exists a large
body of ongoing research examining one or the other as-
pect (or both, but considered separately). Parkes & Shneid-
man (2004) propose “distributed implementations” in which
a market mechanism is used but there is no “auctioneer”,
i.e., both plan consideration and assignment are decentral-
ized. Work in this direction may be particularly fruitful for
MRS due to inherent problems with communication.

Interaction mechanisms can be parameterized as follows:

• medium— the way a message is transmitted from one
agent to another, either directly, through the environment
or through a third, mediating agent; values can be: envi-
ronmental, broadcast, brokered or peer-to-peer.

• content— the type of data a message contains; values can
be: binary, scalar, vector or object.

• decision mechanism— who makes a decision about

Table 1: Taxonomy classes and parameter values for differ-
ent interaction mechanisms, listed top-down from simplest
to most complex

interaction content decision messaging synchro-
classification medium mechanism nization

tacit none none distrib- n/a none
agreement uted
environmental environ- distrib-
cues mental scalar uted continual none
signal broadcast binary distrib- continual none
broadcasting /scalar uted
auctions brokered scalar hybrid once turn-taking

or (or in (with
vector rounds) broker)

reaching an agreement; values can be: centralized, dis-
tributed or hybrid.

• messaging— how many times messages can be passed;
messages are either sent once, in rounds until agreement
(or stalemate) is reached, or continuously.

• synchronization— when messages can be passed, dic-
tating whether agents wait for acknowledgement and/or
responses before sending additional messages (i.e., turn-
taking) or not.

Table 1 contains parameter values for four different inter-
action mechanisms, each of which is detailed in the para-
graphs below. We note that our parameterization builds on
that of Weiss (1999), where agent interactions are character-
ized according to frequency (how often a message is passed),
persistence (how long a message survives), level (the com-
plexity of the message content), pattern (how the data flows),
variability (if the data flow is regular) and purpose (competi-
tive or cooperative). Weiss’ definition of “level” is similar to
our notion of “content”, though we outline specific content
categories; our remaining parameters expand on his set.

Tacit agreements are the minimal form of interaction
mechanism, because there is no explicit communication be-
tween agents, rather, social norms or pre-determined rules
dictate what agents decide to do. Shoham & Tennenholtz
(1992) explore the use of norms and social laws to coordi-
nate the behavior of virtual agents in aMAS; conventions
are either encoded directly into the system or emerge as
the system runs. Minimal interaction mechanisms are most
successful for coordinating fairly simple behaviors, primar-
ily physical formation control. Kowalczyk (2001) presents
mathematically three engineered solutions: leader-follower
(where one robot is chosen to be the leader and the rest of
the robots are designed to follow the leader’s trajectory),
virtual structure (where the robots together form a virtual,
rigid structure of fixed geometric shape), and behavior-based
(where each robot is given a set of low-level individual be-
haviors, such as “avoid obstacles”, and a set of high-level
group goals, such as “surround a target”). Fierroet al.
(2002) describe another methodology for robot team for-
mation in which robots’ control algorithms are designed so
that individuals maintain certain distances from their neigh-
bors while at the same time, they avoid obstacles. Balch &
Arkin (1995) present work on formation control in groups
of robots in which a hybrid mechanism is used for coordi-
nation; robots employ a two-step process in which they first



perceive where they are supposed to be in the formation,
given their current location and those of the other robots,
then they move into position to maintain the formation.
Stone & Veloso (1998) propose the use of “locker-room
agreements” for the RoboCup soccer simulation league as
a way of implementing synchronized decision making in
terms of roles and strategies for the team — the robots agree
before the game to change their behavior based on some
change in the state of the environment.

Environmental cues are mechanisms in which one agent
signals to another by modifying the environment in some
way, for example one agent may lay a trail that another
can then follow. The classic example is ants depositing
pheromone trails when they move towards a food source.
Dorigo, Maniezzo, & Colorni (1996a) introduce the notion
of an “ant system” and describe a series of experiments in
which a population of simulated ants solves an instance of
the classic travelling salesman problem. When an ant trav-
els from one city to another, it leaves a trail which effec-
tively increases the “weight” of a virtual edge between cities,
symbolizing the deposit of pheromone by the travelling ant.
The trail decays (or “evaporates”) over time, so that paths
are learned not only because many agents traverse them but
also because agents continue to traverse them as time passes.
Kube & Zhang (1992) describe a common approach to us-
ing environmental cues for coordinating a team of robots
wherein various “perceptual cues” can be observed that in-
dicate changes in the state of the environment; recognition
of certain states triggers behavioral actions which resultin
coordinated activity amongst the robots.

Signal broadcasting is an extension of environmental
modification in which the messages are actively sent from
one agent to another. A typical broadcast mechanism (like
wireless radio communication) propagates fast; in most en-
vironments, all agents within range receive a broadcast at
nearly the same time and make their decisions almost simul-
taneously. In contrast, when using environmental cues, the
message is only readable when an agent is within sensor-
range and so some agents may not read the message un-
til some time after it has been left. Yanco & Stein (1993)
present an experiment in which robots learned to coordinate
their movements in the form of leader-follower behaviors by
broadcasting signals. InALLIANCE (Parker 1998), robots al-
locate tasks dynamically, communicating with each other by
broadcasting messages indicating which task they are work-
ing on and the status of the task. Watson, Ficici, & Pollack
(1999) present an on-line, evolutionary approach in which a
population of perceptron-controlled robots learns to seeka
light source by broadcasting weights at a frequency propor-
tional to each robot’s success at the task. Werger & Mataric
(2000) implement a “broadcast of local eligibility” architec-
ture in which robots simply broadcast their fitness as they
move around an environment, at the same time reading the
fitness values of their neighbors, and acquiring more fit val-
ues as they are encountered. Vaughanet al. (2000) con-
struct a team of robots that emulate honey bees by learning
a path to a common resource and returning to a home posi-
tion, performing a “waggle dance” in which they share in-
formation about the location of resources, broadcasting only

when successful paths are discovered. Saffiotti, Zumel, &
Ruspini (2000) compare broadcast ranges in a multi-robot
surveillance task; their results show that a local range works
best in their environment, where timing and location are
closely coupled. Kalra, Stentz, & Ferguson (2004) demon-
strate signal broadcasting as the “passive coordination” ap-
proach taken in PC-MVERT, a system that was designed for
experimentation with “tight”, “planned” and “computation-
ally feasible” coordination; when agents communicate their
current plan to their neighbors, results are improved over sit-
uations where there is no communication at all.

Auctions, in economic terms, are market mechanisms –
for selling and/or buying some commodity – in which mes-
sages that agents send are indications of how much they are
willing to pay (or accept, in the case of a seller) and prior-
ity is given to high-price offers to buy and low-priced offers
to sell (Friedman 1993). We distinguish “simple auctions”,
where bids consist of a single number indicating an agent’s
desired trading price, from “combinatorial auctions”, where
a bid will consist of several values specifying a price for a
particular combination of a set of goods. For agent interac-
tion, the mechanisms are adopted with some scalar playing
the role of currency, and the result typically determines not
the allocation of commodities but what the bidding agents
will do i.e., task allocation. The mechanism involves agents
sending offers to an intermediary, an “auctioneer”, who de-
termines a matching on the basis of these offers. One of the
most widely used protocols in implemented multiagent sys-
tems today is the Contract Net (CNET) protocol (Smith 1977;
Smith & Davis 1980), which is a simple yet robust method-
ology for task sharing. In theCNET protocol, one agent is
designated as the “manager” who “announces” a task to a
network of other agents by sending a message called a “task
announcement”. Different levels of broadcasting this an-
nouncement can occur (to a whole network, portions of a
network or individual agents) depending on what the man-
ager knows about the capability (and availability) of the
other agents in the network. Agents submit “bids” indi-
cating their perceived ability to perform a task. The man-
ager decides whose bid(s) to accept and sends “awards” to
those agents. In typicalMAS applications ofCNET, bids
are estimates of the cost of carrying out the task; and the
manager accepts the lowest bid for each task — under such
circumstances theCNET is a simple (first-price sealed-bid)
auction. The effect ofCNET is to distribute tasks to the
agents that can best perform them. Sandholm (1993) de-
veloped an early application ofCNET, used for vehicle rout-
ing, and later proved that exchanging sets of tasks amongst
agents, instead of bidding for single tasks, can help to avoid
local minima (Sandholm 1998). Dias & Stentz (2000) repli-
cated a similar but simpler approach on a multi-robot sys-
tem, experimenting with single-task contracts and contracts
for swapping tasks, to solve a distributed traveling sales-
man problem. Golfarelli, Maio, & Rizzi (1997) described
a task-swapping approach using the contract net protocol
for groups of robots performing coordinated path-planning.
Simmonset al. (2000) introduced a market-based approach
to a coordinated map building problem wherein each robot
constructs a “bid” based on its expected information gain



for going to a number of different cells; the bids are sent
to a “central executive” who assigns tasks to each robot us-
ing the bids to determine a global maximization. Gerkey &
Mataric (2002) implemented a market-based approach for
task allocation in a team of robots working on both tightly
and loosely coupled tasks.

Population diversity
There has been a considerable amount of related work
addressing the notion of diversity within a population of
agents, i.e., the degree to which a group of agents are het-
erogeneous (as opposed to homogeneous). Balch (1998)
found that heterogeneity does not always pay off: for sim-
ple tasks, like foraging, a homogeneous population may do
better, while for more complex tasks, like soccer, hetero-
geneity is better. However, several counter-examples have
been found. Potter, Meeden, & Schultz (2001) reports that
(Luke 1998) found that, for the RoboCup-97 competition,
a homogeneous population was better off: under the time
constraint of the competition, a heterogeneous population
did not converge quickly enough to fit solutions (team com-
positions). In their own work, Potter, Meeden, & Schultz
(2001) let a team of robots co-evolve controllers under dif-
ferent levels of task difficulty, and they examined the trade-
offs between homogeneity versus heterogeneity. The robot
controllers were neural networks; in heterogeneous popula-
tions, individuals each developed their own neural network;
in homogeneous populations, individuals shared the same
neural network. Their work demonstrated that simply in-
creasing the difficulty of the task is not sufficient to justify
heterogeneity.

Many models for division of labor use threshold (Besher
& Fewell 2001) or transition functions (Lerman & Galstyan
2003) to describe how to change from one role to another.
A threshold model defines different limiting values for each
role; when a specific internal variable in an agent falls within
a certain limit range, the agent starts playing a role that cor-
responds to that range. This limit is usually based on some
environmental cue. For example, in a honeybee colony,
worker bees adopt a “patroller” role based on the number of
perceived enemies. A transition function is based on some
(event or observation) history and describes when to adapt
another role. For example, Jones & Mataric (2003) devel-
oped a simulated robotic application with red and green puck
collector roles where robots can change roles if necessary.
A transition function is continuously evaluated that takesin
(for a red puck collector) the number of observed red pucks
and red puck collectors over some fixed time window and
outputs the probability to change to a green puck collector.

Numerous models exist in biology for division of labor,
which are extensively described by Besher & Fewell (2001).
They discuss six different models that describe the integra-
tion of individual worker behaviors into colony task organ-
isation: response threshold models, integrated threshold-
information transfer models, self-reinforcement models,for-
aging for work, social inhibition models and network models
of task allocation. While it is beyond the scope of this paper
to detail these models here, it is interesting to mention two
observations made by the authors: first, the models are not

able to explain the phenomenon of division of labor, as they
have merely been exploratory; and second, the evolution of
division of labor is one of the necessary areas of study in
order to assess how selection and self-organisation interact
to produce complex behavioral properties in multiagent sys-
tems.

The division of labor models from biology have inspired
many roboticists. They exploit the parallel operation and
transfer of information among the agents for designing flex-
ible, robust and effective robotic systems (Krieger, Billeter,
& Keller 2000). The well-known ant algorithms (Dorigo,
Maniezzo, & Colorni 1996b), described earlier, are a preva-
lent example. Related research on ant-like task allocation
(Krieger, Billeter, & Keller 2000) looks explicitly at the rela-
tionship between group size (clusters) of agents and the effi-
ciency of the colony. The task allocation was based on vari-
ation in individual stimulus thresholds. Experiments show
that groups where agents could recruit other agents were
significantly more efficient at exploiting clustered resources
than groups without information transfer.

Our approach
We have developed a framework which allows experimenta-
tion with varying values along the axes of levels of interac-
tion and diversity. Our framework is a grid-based, toroidal
artificial world in which agents exist and act in simulated
real-time. The prototype version is implemented using Net-
Logo1 (Wilensky 2002) and is pictured in Figure 2. The
world is designed so that simple re-interpretation of parame-
ters and slight modification of transition functions can easily
transform the environment to represent several similar task
domains, such as foraging, area coverage and constrained
search. The discussion here is limited to a resource collec-
tion, e.g., foraging or de-mining task, based on earlier work
(Eiben, Nitschke, & Schut 2005).

Figure 2: mindScape

The large square region near the upper left corner represents
“home”. Small square regions, equal in size to one grid cell, con-
tain resources. Agents are indicated by closed pentagons (“explor-
ers”), open circles (“extractors”) and arrows (“transporters”).

1http://ccl.northwestern.edu/netlogo/



The mindScapeworld is initialized with a number of re-
sources and agents that are scattered randomly throughout
the grid. The agents must find resources, gather them and
return them to a fixed “home” location. There are three
types of resources (labeledA, B andC), where each may
require special agent capabilities to gather. Agents are re-
warded for bringing resources to the home location, and for
each resource, the reward is distributed amongst the three
agents (explorer, extractor and transporter) who contributed
along the way to the discovery and delivery of the resource.
Agents are given three capabilities:vision, extractionand
transportation. Agents who each possess only one capabil-
ity inherently define three “roles”:explorers, extractorsand
transporters.

Explorers specialize in searching for and discovering re-
sources. Explorers have 8 “vision” sensors, as shown in Fig-
ure 3. At each time step in the simulation, the sensors look in
8 directions and return the distance to the nearest cell con-
taining at least one resource. The explorers then commu-
nicate to extractors the location of resources that are near
them. The system currently can enable either environmental
cues or signal broadcasting as a means for explorer-extractor
and extractor-transporter interactions.
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Figure 3: “vision” sensors

Extractors are good at gathering resources — the actual
removal of resources from the location on the grid where
they are discovered. At each time step, if an extractor is on
a cell that contains at least one resource, then the agent can
extract a resource from that cell, up to a fixedcapacity. Each
agent is endowed with an extraction capacity, represented by
a vector indicating how many of each type of resource the
agent can hold at a given time. If an extractor is holding at
least one resource, then it cannot move; it has to wait until a
transporter crosses its path, then it can transfer its resources
to the transporter, move to a new location and start gathering
again.

Transporters carry the collected resources to the home lo-
cation. They are endowed with a transportation capacity, in-
dicating how many resources they can carry at once. When
transporters meet extractors, then they receive resources
from the extractors and move to the home base (where they
can unload the resources). They take the shortest path to the
home. If they meet extractors along the way, then they can
receive additional resources — up to their maximum capac-
ity.

Each agent’s capabilities can be described by a trio of nor-
malised values between0 and1: (v, x, t), wherev = vision
capability,x = capacity to extract resources andt = ability
to transport resources). We can imagine every agent as a
point in this three-dimensional space. In a completelyho-

mogeneouspopulation, every agenta would have the same
(v, x, t) values as every other agent, e.g.:

∀ai, aj , (vi, xi, ti) = (vj , xj , tj)

Forheterogenouspopulations, we can further analyze the di-
versity by attempting to cluster groups of agents: this refers
to the individual’s degree ofspeciation. It will help us com-
pute the level of specialisation and distribution of special-
ities within the population. We can define the fixed agent
roles, mentioned above, as:
• explorer= (1, 0, 0)

• extractor= (0, 1, 0)

• transporter= (0, 0, 1)

Then, for every agent in the population, we compute its dis-
tance to each fixed agent role and “cluster” the agents around
these pre-defined roles.

Because we are interested in the notion of specialisation
within a population, we need a way to measure the simi-
larity between any two agents. We also need a means for
describing the level of “sameness” amongst all the agents in
a population – this is a form ofparity. We use the Euclidean
distance to determine the similarity between any two agents.

di,j =
√

(vi − vj)2 + (xi − xj)2 + (ti − tj)2 (1)

In order to examine the parity of an entire population, we
perform pairwise comparisions for all the agents, filling in
the upper triangular distance matrix:

∀i, j : i > j,Mi,j = di,j (2)
The larger the values in this matrix, the more disparity, or
heterogeneity, there is in the population. We can use stan-
dard statistical techniques (e.g., mean and standard devia-
tion) on the set of values inM in order to compare different
populations.

Our experiments with the mindScape environment have
involved crafting and evaluating various populations. We
have been examining differentrole ratios, i.e., the relative
number of explorers, extractors and transporters in the popu-
lation. In addition, since the capacitiesv, x andt can be real-
valued, we are considering populations where agents’ roles
are less well defined and may not be singular; for exam-
ple, an agent’s capacity values could be(0.99, 0.78, 0.12),
indicating that the agent has strong abilities for exploration
and extraction, but not for transportation. Initial work eval-
uated hand-coded populations, where the role ratios and ca-
pacity values were set manually. More recent work has been
exploring the use ofevolutionary computationto adapt the
population in two ways. First, the role ratios within the pop-
ulation can change over time, allowing us to evolve popula-
tions with varying ratios of explorers, extractors and trans-
porters. Second, the capacities of individuals can change
through reproduction: if we allow an explorer and an extrac-
tor to “mate” (using an evolutionary algorithm), they may
produce an offspring with hybrid capabilities. These fea-
tures allow us to experiment with heterogeneity not only in
terms of role allocation, but also in terms of evolved species.
The evolutionary paradigm is a natural choice, since its rules
for recombination provide an easy way to explore many
closely related populations.



Discussion
The mindScape prototype is currently undergoing bench-
mark testing. We have compared the results for a set of
hand-crafted role ratios, for example see Table 2. Prelim-
inary results have revealed several issues.

Table 2: definition of sample benchmark experiments
experiment interaction ratio of ratio of ratio of

number mechanism explorers extractors transporters
1 BROADCAST 0.33 0.33 0.34
2 TRAIL 0.33 0.33 0.34
3 BROADCAST 0.68 0.14 0.14
4 TRAIL 0.68 0.14 0.14
5 BROADCAST 0.14 0.68 0.14
6 TRAIL 0.14 0.68 0.14
7 BROADCAST 0.14 0.14 0.68
8 TRAIL 0.14 0.14 0.68
9 BROADCAST 0 0.5 0.5
10 TRAIL 0 0.5 0.5
11 BROADCAST 0 0.75 0.25
12 TRAIL 0 0.75 0.25
13 BROADCAST 0 0.25 0.75
14 TRAIL 0 0.25 0.75

First, the standard deviation of results is typically quite
high. Current benchmark experiments count the number of
resources delivered to home and the average energy level of
agents at the end of a run. The average standard deviation
value is approximately 20% relative to the mean.

Second, preliminary experiments, such as shown in Fig-
ure 4, result in very little difference between the two inter-
action mechanisms. As a result, we are tuning functions that
determine decay of environmental cues and broadcast range
in order to better understand these parameter spaces.

Figure 4: sample benchmark tests

Third, the definition of rules for energy consumption and
renewal within the system is crucial. Inappropriate settings
produce unexpected results. Transporters are the agents that
collect the energy reward when delivering resources. The
question is: how should those rewards be distributed to the
other agents that helped discover and extract the resources?
Essentially, this is a credit assignment problem. Within
the evolutionary computing community, there exists a large
body of literature examining various approaches, e.g., (Wil-
son 1994). In addition to evaluating the application of these

approaches to our scenario, we are also exploring a market-
based approach to evolving appropriate functions for setting
energy levels. This work involves comparing (1) a two-
tiered market in which explorers interact with extractors,
and extractors interact with transporters; versus (2) a single-
tiered market in which explorers and extractors both interact
with transporters.

Once benchmark testing is complete, a full set of exper-
iments will be conducted along the two axes (interaction
mechanisms and population diversity). Analysis will exam-
ine relationships between complexity levels of interaction
and speciation vs diversity levels of heterogeneity within
evolved populations. In future work, we aim to move the re-
sults from the simulated domain onto real robots. Plans are
underway for a series of experiments using 50 LEGO Mind-
storm robots, following the rules and environmental struc-
ture defined in mindScape.
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