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Abstract

Can adaptive behavior be useful in a human learning environment? The work
presented here proposes that introducing adaptive agents to a human learning com-
munity can be effective in several ways:

1. to guide selection of appropriate problems for human learners,
2. to embody “self-organizing” curricula,

3. to provide simple student models,

4. to impersonate human learning partners, and

5. to facilitate indirect human-human interaction.

Taking a population-based approach and using evolutionary computation method-
ologies, we bring two types of software agents into an Internet learning community.
Inside our CEL (Community of Evolving Learners) system, humans play compet-
itive, educational games, openly or incognito, with each other and with software
agents, while the populations of learners — human and agent — advance.

The overarching goal of this research is to investigate the various factors that
contribute to this type of environment and their effects on both human and machine
learners. We wish to demonstrate that the progress of each student can be tracked
and that the agent populations adjust according to changes in human behavior,
taken both on an individual and aggregate basis. Hopefully, the result will be that
humans participants frequent the system over time and become active members of
the learning community.



1 Introduction.

With the advent of the Internet, humans have found new and exciting ways
to communicate. The explosive popularity of electronic mail, news groups,
instant messaging and on-line chat is proof that, like the telephone, computer
networked communication is here to stay.

These new forms of human interaction allow us to establish the notion of
a virtual community, wherein humans in diverse places and time zones can
exchange thoughts and share experiences just as in a traditional community,
but the need for co-located participants is now eliminated.

Humans are not alone in populating the Internet. Software agents also
inhabit cyberspace — small computer programs that are designed to help
human users accomplish specific tasks [53, 54]. Agents have been created
to perform many different functions; and Internet agents are gaining promi-
nence as browsing assistants [52], matchmakers [27, 46], recommenders [5]
and filterers of email [31, 49] and news group messages [47]. Some agents use
machine learning techniques to adapt their behavior to the needs of individ-
ual users [71, 5].

The work presented here brings adaptive software agents into an Internet
environment where agents help human users learn and, in turn, learn how
to do their own job better through their interactions with the humans. In-
side the Community of Evolving Learners (CEL), humans play competitive,
educational games, openly or incognito, with each other and with software
agents; and the learners — human and agent — advance.

Within the CEL framework, there are two types software agents: (1)

bithots and (2) “secret” agents. Bitbots represent little bits of knowledge



to be learned; a population of bitbots is a problem set i.e. the content
of a game. For each human user, an individualized population of bitbots is
created and adapts based on that human’s changing needs.

Inside CEL, pairs of humans engage in competitive games. Their individ-
ual bitbot populations are merged, and the composite sets of bitbots act as
proxies in their matches.

The CEL system attempts to create appropriate matches between humans
in such a way as to stimulate learning. However, CEL is an open system
on the Internet and does not control who is logged in. It is possible that
for a given human at a given time, no appropriate human partner is also
connected. Therefore, CEL provides “secret” agents that act as substitute
learning partners and emulate the behavior of human players. These agents
also adapt, adjusting to the needs of the aggregate human population.

To enable learning in both types of agents, a population-based approach
is taken and evolutionary computation techniques are applied. Some of the
methodologies were used in earlier work [30, 29, 80, 81], where the notion of
co-evolution between populations of humans and software agents was intro-
duced.

In co-evolutionary machine learning [36, 3, 58, 73, 79, 41, 69], two (or
more) populations of agents compete against each other. In successful appli-
cations of this technique, an “arms race” spiral develops where each popu-
lation spurs the other to advance, and the result is continuous learning for
both populations. Work examining the dynamics of co-evolutionary learning
environments has given insight into phenomena that contribute to success
[15, 10, 69, 24]; in particular (1) it is important to select appropriate experi-

ences for individual learners pairing a novice to compete with an expert



will not help either player advance; and (2) it is crucial to prevent collusion
between members of competing populations — two players agree to “draw”
each other so that neither will be eliminated, but also neither will learn.
The work presented here carries these insights into the realm of human
learning. The co-evolutionary approach is applied in three ways. First, a
population of bitbots co-evolves with each human user. Second, a population
of secret agents adapts with the population of human users taken as a whole.
Third, humans compete against each other in the games they play. It is
recognized that the use of competition in education is controversial. However,
if participants are anonymous and success rates are controlled, many of the
more contentious issues may be superseded in favor of the more powerful

motivational aspects that competition can provide.

2 Contribution.

The main contribution of this thesis will be to investigate the effects of adap-
tive environments on both human and machine learners, demonstrated in an
Internet community where humans play competitive, educational games with
each other and with software agents, and where the learners — human and
agent are both evolving. We hope to show that the progress of a student
can be tracked, that the system can adapt in its selection of appropriate
competitors and game content, and that the proper choices result in human
participants becoming active members of the learning community.

There are several aspects of CEL that serve to support these claims and
distinguish this project from other Internet communities and intelligent tu-

toring work:



1. Adaptive behavior approach to problem selection. A new type of agent is
introduced, called a bitbot, that represents little “bits” of knowledge to
be learned — and is actually the content of each game. A population of
bitbots constitutes a problem set. For each human user, a population
of bitbots is instantiated, and, using evolutionary programming tech-
niques, adapts as the user progresses (see section 6.1). We believe that
we are the first to apply adaptive behavior methodologies to an intelligent

tutoring system.

2. Self-organizing curriculum. While the performance of each human drives
the selection of individual bitbot populations customized for each user,
for the aggregate human population, the sequence in which bitbots are
chosen may generalize into an ordered, hierarchical list. Each tier could
be considered a step within an incremental, or staged, learning envi-
ronment, where the stages are evolved, not engineered. We believe this
to be a new type of “self-organizing curriculum”, one that emerges as
the system is used — feasible because of the mass human data collection

opportunities enabled by the Internet.

3. Simple, evolving student model. A student’s performance with the bit-
bots serves as a model of that student’s abilities. This model evolves
with the student and requires no domain-dependent engineering to build
(aside from defining the bitbots themselves) (see section 6.2). This ap-
proach is quite different from more traditional user modeling techniques,
which are typically highly engineered to the task domain (see section 4).
We believe that this simple, evolving student model will be sufficient to

guide appropriate problem selection and opponent choice.



4. Playgroup control. Humans are placed in appropriate playgroups, guided
by their student models and a prediction of how they will perform
against each other (see section 6.3). They can only challenge playmates
(opponents) from this group, whose membership is controlled by our
server with the aim of producing a desired outcome (i.e. win rate) for
each member across a series of interactions. This notion of only giving
players access to appropriate playmates distinguishes CEL from other
game playing sites. Typically, users can see everyone else who is logged
in at a given time (e.g. games.yahoo.com). We believe that ezxercising
control over a user’s playgroup will allow us to experiment with various
membership compositions, to help determine what “appropriate oppo-

nent choice” really means.

5. Indirect player interaction. CEL users communicate indirectly, with
agents acting as mediators. When two users play a game in CEL, each
communicates directly with his/her bitbots; and each user’s bitbots pass
“moves” to their opponent’s bitbots. In other Internet communities (e.g.
MUD?’s), users communicate directly in a “chat” environment; this is a
controversial setup for children, due to privacy and safety concerns for
young Internet users, as well as curricular issues like ensuring that par-
ticipants stay “on task”. We believe that CEL’s method of indirect,
mediated human-agent-human interaction addresses these concerns ef-
fectively.

6. Creative, graphical, individualized player identification. CEL is a graph-
ical environment, and players are identified to others only through 2-
dimensional icons, called IDsigns. A simple web-based tool allows users

to create and edit their own IDsigns. In most Internet communities,



users are known to others by name (usually an alias). We believe that
allowing users to create and edit their own icons graphically helps spark
interest for young players, provides an outlet for their creativity, as well

as preserving user anonymity.

7. Secret agents as learning partners. When no appropriate human oppo-
nents are available in the system, “secret” software agents are instan-
tiated to act as substitutes (see section 6.4). It may be important for
these agents to behave intelligently enough for a human user to believe
she is interacting with another human. Neural networks control these
agents, trained using a novel approach that takes advantage of human
behavior observed in the system. While we do not claim to be able to
pass a Turing Test, we believe that providing “secret” software agents
to emulate human learning partners enables the system to maintain the
desired playgroup control (as above) without making users wait for ap-

propriate mates to log on to the site.

Finally, a disclaimer: there will be no attempt to prove that as a direct
result of using the system, learning has occurred on the part of the humans
who participate. The skills tested in this initial implementation of CEL are
fundamentals (like spelling and arithmetic); the target user group is primary
aged school children, and participants will be exposed to many other stimuli
for advancing these skills outside of CEL.

It is hoped that future work will extend the games in CEL beyond fact-
learning applications. But, just as a child must be able to spell before she can
write, or be able to add before she can manipulate differential equations, CEL

begins with simple games. A longterm goal is to use the CEL framework to



enable more complex problem solving scenarios and to host further human-

human and human-agent learning experiments.

3 Motivation.

In the last two decades, the invention and rise in popularity of personal
computers has brought about a new and burgeoning market for educational
software. Subsequently, with the introduction of computers into schools,
the market has continued to expand and educational software has infiltrated
classrooms, with mixed results. Today, schools are being “wired” at a rapid
rate, giving teachers and students direct access to the Internet. Yet, with
all this vast and varied hardware and software, the predominant paradigm
involves one student sitting at one computer using one program — alone.

However, it has been shown throughout history that group learning can be
very effective [84, 83, 40], especially when participants cooperate. In contrast,
the role of competition in human learning, particularly in formal education, is
controversial [63, 43, 40, 39]. Yet competition is a central organizing principle
in western society. Athletic events, political campaigns, legal cases, industrial
battles, military encounters, Nobel prizes — all are “races” to be won or lost.
By eliminating competition from schools, are we ill-preparing our children to
thrive as adults in the “real world”?

The work presented here explores the use of anonymous competition, cus-
tomized to the individual, in a human learning environment. Perhaps if
learners’ identities and ages are kept hidden and win rates are controlled, then
many of the more contentious issues associated with the use of competition

in education may be superseded in favor of the more powerful motivational



aspects that it can provide.

3.1 Machine learning.

The general idea of machine learning where computer programs advance,
developing better and more efficient ways to accomplish given tasks — has
been around since (at least) the 1950’s and has often been thought of in the
context of game playing [75, 57, 26, 9, 90, 22]. Games are a good domain
for such research, since they typically have a fixed goal and a finite set of
predefined rules that allow a player to achieve the goal within a reasonable
amount of time. Chess, checkers and backgammon have been a few of the
more popular games used for these studies.

A game can be played by using a certain strategy, or set of strategies
a method and order for applying the rules of the game, with the intent of
achieving the fixed goal. If we sat down and enumerated all the possible ways
of playing a game, the result would typically be a huge list. So the question
becomes a matter of search. Given a very large list of possible strategies, how
can we find the ones that will result in achieving the game’s goal?

The following is an evolutionary programming approach [26, 37, 45]: rather
than try to engineer a winning strategy, enumerate a manageable number of
strategies, use these to play games and see how well they do. Then keep
the strategies that do well and use selection and reproduction techniques to
replace the ones that do poorly with other strategies that have not been
tried yet. Using this method, a population of successful strategies is built up
gradually. At any time, the population will represent some ways of playing

the game; eventually, the population will contain the optimal way(s).



3.2 Human learning.

A key concept in human learning is “learning by doing.” Constructionism
[64, 65, 72] is a formal definition of this notion applied to education. For
humans, motivation is of primary concern. While “practise makes perfect,”
students need to be motivated to practise in the first place — and to practise
correctly, not to practise mistakes (otherwise the mistakes will be learned
instead).

How can students be motivated to practise? Today’s computer games
are filled with fancy animations and nifty audio. In order to vie for a child’s
attention, a software application has to be able to compete with this standard
— or else proffer something completely different. Humans are naturally social
creatures. If a software application offers a learning environment that is a
community, then humans should be encouraged to participate purely by their
innate desire for human contact, even virtual human contact. The amazing
popularity of text-based MUD’s! is such an example, and many have used
this to their advantage in building successful educational MUD’s [12, 33, 23].

If an environment encourages students to keep practising, then learning
should follow naturally. In an artificial co-evolutionary learning situation,
where two (or more) populations of agents are advancing, the learning en-
vironment consists of other learners students are each other’s teachers.
We posit that this is also the case in our CEL environment, and hypothesize
that some of the features that contribute to the success of a co-evolutionary
learning environment will also be pertinent here. As such, our environment

should be constructed to (1) provide appropriate experiences for individual
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learners; and (2) prevent collusion between participants.

What does “appropriate experience” mean? Fundamentally, if a student
is given problems that are too hard, then he will answer them by guessing
and will not learn, or may even learn the wrong answers; if a student is given
problems that are too easy, then he will get bored when answering them
and may provide inaccurate answers due to lack of attention; if a student
is given problems that are “just right,” then he will be challenged appro-
priately and learning will take place. In an environment where students are
learning from each other, the notion of appropriate experience also applies
to matching students with proper learning partners. This concept has been
formalized for artificial learners in the Meta-Game of Learning (MGL) hy-

[4

pothesis [69, 80] and for human learners, is related to Vygotsky’s “zone of
proximal development” [95] and to “scaffolding” [38] in intelligent tutoring
systems.

How can “collusion” be prevented? One problem with a MUD is that
activity and communication are not controlled. Users are free to “say” any-
thing they want. In some educational contexts — such as learning creative
writing open communication is desirable and necessary. But in others
such as learning multiplication tables — this is not necessary and may not
even be desirable, because bored students will be inclined to stray from the
curricular task and shift the discussion to other topics?.

Another issue with unrestricted communication, especially on the Inter-
net, is that parents are worried about who their children are communicating

with. Though everyone in a community may be using an alias, an anonymous

exchange of inappropriate ideas or language may still occur. Providing a safe

2This could also occur in the creative writing domain.

10



environment in which young students can interact is of primary concern.

If contact between participants is mediated artificially, where software
agents enable indirect human-human interaction via direct human-agent in-
teraction, then the agents can force human participants to stay “on task”,

thereby preventing collusion and addressing safety issues as well.

4 Some related work.

This work finds itself at the intersection of several areas of human and ma-
chine learning, particularly intelligent tutoring systems (ITS), student mod-
eling, collaborative learning and adaptive behavior. These fields encompass
a vast literature which will be reviewed thoroughly in the thesis. Many per-
tinent references are cited throughout the text. Some others are cited below.

Seminal work in the ITS field began with frame-based tutoring systems
[11] and continued to focus in areas like constructing rules [2] and modeling
student’s misconceptions [93, 85]. Some of these ideas have been developed
into systems tested in laboratories, classrooms and work places [42, 77].

More recent, work has continued to explore these areas in more depth.
Student modeling has been aided by statistical techniques [56, 6, 94] as
well as artificial intelligence methods like case-based reasoning [1]. Other
work has examined customizing to the needs of individual students in web-
based systems, for example ELM-ART [13], CALAT [62] and MANIC [86].
These require considerable domain engineering on the part of the system de-
signer/programmer and significant psychological testing to reveal the granu-
larity of a single curriculum area.

Others are working to enable Internet learning communities; projects such

11



as CoVis [66], KIE [8], Virtual Classroom [92], Belevedere [87], PuebloMOO
[96] and MOOSE crossing [12] are a few of the more successful examples.
However, we believe that no one else is examining the role of competition in

this type of virtual learning environment.

5 A brief tour of CEL.

CEL is an Internet-based system where students engage in two-player edu-
cational games. These games are easy to use and provide practise at basic
skills (e.g. keyboarding, arithmetic, geography, spelling). The system is built
using HTML, CGI-bin, C and Java and is accessible from a web browser like
Netscape?.

Users log into the system with a personal user name and password. Once
inside, users are represented by two-dimensional icons called IDsigns which
identify them to other users. In order to maintain the anonymity that some
CEL experiments require, and for reasons of privacy, the user name (and
password) are never shown to others. Users access a tool called the IDsigner
to create and modify their IDsigns (figure 1a). Once a user is connected to

the system, she selects the game that she would like to play (figure 1b).

3

currently the only browser fully tested
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Then the user is placed in an open playground, where she is shown a
matrix containing IDsigns of other users who are currently logged into the
system and are playing her chosen game (figure 1c). These are her playmates;
together they comprise her playgroup. By clicking on a playmate’s IDsign,
the user challenges the playmate to a match.

During the course of a game, feedback is provided to each user, updating
the moves of the opponent in near real-time. However, the match may not
occur simultaneously at all if, for example, a network link is slow or one user
is interrupted. In this case, the system provides to each user whatever moves
are available from the opponent.

An example of the keyboarding game called Keyit is shown in figure 1d.
In this game, users are each given up to 10 words to type as fast as they can,
maintaining 100% accuracy. The two players need not type the words at the
same time. The timer begins when a player enters the first letter of a word,
time is measured using the system clock on the client’s computer and score
is reported in hundredths of a second.

Once a user has completed her game, her browser returns her to the
playground and she is free to engage in another match with another (or the

same) playmate.

6 Approach.

CEL takes an adaptive behavior approach that sets it aside from other in-
telligent tutoring systems. The issue of providing students with appropriate
learning experiences becomes a question of finding the right set of knowledge

bits (i.e. bitbots) for that student to interact with. This question can be re-
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duced to a search problem similar to finding the right game playing strategy
— and is attacked with a co-evolutionary method. The game is to challenge
the student, and the goal is to get the student to provide the right answer a
certain percentage of the time. A population of bitbots is generated and eval-
uated according to how well they achieve the goal — of having the student
provide the right answers a certain percentage of the time. When a student
has interacted with a small number of bitbots, the population is replenished
for further interactions, keeping some bitbots and replacing others.

Note that the students are learning. A set of bitbots that achieves the
desired goal at one point in time may not solicit the same result several
weeks or months later. This means that one fixed solution will never be
found because the search is trying to optimize to a moving target. Hence
co-evolutionary learning, wherein the two populations students and bitbots

— are learning simultaneously and through their interactions with each other.

6.1 Problem selection.

Based on earlier work [80], a simple agent called a bitbot has been developed,
using concepts adapted from genetic algorithms and evolutionary program-
ming [26, 37, 45]. A bitbot represents a small “bit” of knowledge that a
student must learn, encoded in a genetic bit string. Bitbots currently come
in two varieties, to support word and number games.

The definition of a bitbot is domain-specific. An example word bitbot is
shown in figure 2a, for the word blue. The word bitbots are used for both
spelling and keyboarding games, so there is an attempt to capture features

of a word that might make it easier or harder to spell or type and to use

these to define seven genes, which are concatenated to form a chromosome.
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word = blue
LLLLL KKKK SSSSSS VWV CCCC 2222 333

4 8 6 2 2 1 0
chromosome =1~~~ =~~~ =~ - ~|l- -~~~ -~ - -~ - oo
{ 00100 | 1000 | 000110 0010“ 0010“ 0001‘ 000“
where:
LLLLL =length of word
KKKK  =keyboarding level
SSSSSS = scrabble score
WW = number of vowels
COCC = number of consonants
2222 =number of 2-letter consonant clusters word = blue
333 = number of 3-letter consonant clusters
: " " 4 8 6 2 1 0|
(&) chromosome for word bitbot "blue". chromosome =1 = = ===~~~ <o oo ST
00100 | 1000| 000110 0010, 0001 000
word = red
word = blue 3 2 4 1 2 0 0
chromosome =7~~~ ~ |-~~~ -~~~ ==~ - - ~{----q-- - ~- -~ -
00011 | 0010 | 000100| 0001] 0010] 0000] 000
4 8 6 2 2 1 0
chromosome=1------f----fF------|-----4----4---—-|---—
00100 | 1000 | 000110| 0010 | 0010| 0001| 000 j
L mutate
4 8 6 2 2 0 0
chromosome = [ B 6 2] 2p 1o L S e e i B ey B i
00100 [0111 [ 000110 0010 | 0010] 0001| 000 00100 | 1000 | 000110] 0010 | 0010] 0000] 000

L | L J

- — 3

word = acre word = meat

(b) sample mutation of "blue". (c) sample crossover of "blue" with "red".

Figure 2: A sample word bitbot.

The selection of these features is based merely on empirical evidence, with
the exception of the “keyboarding level.”*

A population of bitbots constitutes a problem set. Evolutionary pro-
gramming techniques are used to define an initial population of bitbots for
interacting with a new user and to produce subsequent populations of bithots
as the user progresses.

Various techniques will be tested for forming this initial population and for

4There is a standard order in which keys are introduced to students learning typing. The keys are

presented in eleven groups; each group is considered a “keyboarding level” here.
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producing subsequent generations. In general, an initial population is chosen
at random; however, it may be more effective to impose some limitations on
this initial selection. If the first set of bitbots seen by a new user happens
to contain members that are all too hard or all too easy, then the user may
not get a good first impression of the system and may be uninterested in
participating further. Rather it may be more effective to form an initial set
based on a uniform distribution amongst the various values of bitbots.

Reproductive operators like mutation and recombination have all proven
effective for various tasks using genetic algorithms. Currently, mutation and
single-point crossover are being used to produce members of each next gener-
ation of bitbots. An example is illustrated in figures 2b and 2c¢. The numeric
chromosomes from the current population are transformed into chromosomes
for the next generation. For each new (valid) chromosome, a corresponding
word is located in a database. The entire set is the content of the user’s next
game.

The selection of appropriate bitbots for each user to interact with is crucial
to the success of the system — bitbots that are too hard will frustrate the
user; bitbots that are too easy will bore the user. Since the CEL system
exists on the web, where thousands of other sites are just a click away, these
issues are perhaps even more important than with other applications. The
system has to grab a student right away, challenge her enough to keep her
interest and entice her to return.

A human’s performance drives the selection of bitbots. For the aggregate
human population, the sequence in which bitbots are chosen may generalize
into an ordered, hierarchical list. Each tier could be considered a step within

an incremental, or staged, learning environment [48], where the stages are

3
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evolved, not engineered. This can be considered a self-organizing curriculum,
and this technique could have significant impact for future intelligent tutoring

systems.

6.2 Student modeling.

For each student, her performance with a set of bitbots gives an indication of
how well that student has acquired those bits of knowledge that the bithots
represent. This is viewed as a simple student model.

The model is a by-product of the design of the CEL system, and it is ob-
tained through a student’s normal interactions with the system. No domain-
dependent engineering is involved in constructing this model, outside of that
which is done to define the bitbots themselves. This type of model is different
from others found in the literature, e.g. [56, 6, 94, 1]. Experiments will be
conducted to see if such a simple model is useful — a model that is based
exclusively on a user’s performance with the system, what the user did rather
than how the user did it.

The most common function for a user model is to guide subsequent in-
teractions between the particular user and the system. In CEL, this has
ramifications in two areas. First, it can effect which bitbots are selected
for the user to interact with. Second, it can guide matching of appropriate
opponents. Each of these is addressed separately in sections 6.1 and 6.3,
respectively.

Preliminary experiments are being conducted based on the data from an
earlier experiment [30, 29], which produced a large database of performance
statistics between human Internet users and software agents playing a simple

video game called Tron. The agents were artificial players, controlled by
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genetic programs. The results of over 200,000 games comprise this data set,
played by approximately 4000 human users and 3000 agents.

In this context, a user model is conceived for each human player as a large
vector containing the averaged results over all encounters with every agent.
This is a sparse vector because, while there are over 3000 agents existing,
most humans played an average of about 87 games (although 19 users have
played over 1000 games apiece), which means that most humans met less
than 3% of the agents.

A CEL environment has been built for Tron — called the Tronament — that
has the same system architecture as the educational CEL, but participants
engage in games of Tron, rather than educational applications like Keyit.
This setup is being used to experiment with the vectors described above, to
see if this type of model can be used to affect three areas: problem selection,
playgroup formation, secret agent usage. This will be a useful first step, since
there already exists a substantial data set to guide the processes as well as a
large user base playing Tron. The assumption is that results obtained from

these experiments will carry over directly to the educational applications.

6.3 Player clustering.

Players are clustered into playgroups containing potential playmates. It is
critical to form a playgroup for each player such that the playmates therein
can provide appropriate challenges. Of course, given the unpredictability of
human behavior, it will be impossible to surmise precisely what a potential
playmate’s behavior will be, but an educated guess is made. A record of
predictions and outcomes will be maintained in order to obtain a measure of

the reliability of the predictive mechanism, as it applies to each user.
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Taking this prediction reliability rating and each user’s student model as
input, users are clustered and playgroups are formed. These groupings are
highly dynamic, as users enter and exit the system and as games are played
and the student model and prediction ratings change.

A playgroup is represented conceptually as an undirected graph, where
each player is a vertex in the graph. Edges are drawn between players who
are considered to be appropriate playmates. Edges are updated as players

enter and exit the game and as games are played and users progress.

(2)
(s)

Figure 3: The graph of a playgroup.
Player 1's playgroup contains players 4 and 7; player 2’s playgroup con-

tains players 6 and 7; player 3’s playgroup contains player 6; player 4’s
playgroup contains player 1 and 6; player 5 has no playmates; player
6’s playgroup contains players 2, 3, 4 and 7; and player 7’s playgroup
contains players 1, 2 and 6.
An example is shown in figure 3. A player only sees those players that are
in his playgroup. In the example shown, this means that even though players
1 and 2 are both connected to the same game at the same time, they do not

see each other’s IDsigns in their playgrounds because the game server does

not deem them to be appropriate playmates. Connections are bi-directional,
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so (e.g.) if player 1 sees player 7, then player 7 also sees player 1. However,
links are not transitive: players 1 and 7 see each other, players 7 and 2 see
each other, but players 1 and 2 do not.

This notion of only letting players see appropriate playmates distinguishes
CEL from other game playing web sites. Typically, users can see everyone
else who is currently logged in; this is the method used at the popular site
games . yahoo. com, for example. But in order to maintain control over success
rates in CEL, users are only given the opportunity to challenge others who
are near to their own skill level.

Two algorithms are being explored for defining playgroups, (which is
equivalent to determining the edges of the graph in figure 3). Each uses
a different general approach, one absolute and one relative.

In the first approach, all players are ranked according to an absolute scale
and only vertices of players whose ranks are within a certain epsilon (€) of
each other are connected. This algorithm maintains an auxiliary index on
the list of players, sorted by rank. Edges are drawn on the graph by sliding
a window of width 2 % ¢ down the indexed list of players and connecting all
players that are inside the window. The cost of this method is O(r * n?),
where r is the time it takes to calculate the rank of each player and n is the
number of players in the graph.

The second method computes a relative distance between every pair of
players in the graph and only connects vertices of players whose distances
are within a certain epsilon (e) of each other. The cost of this method is
O((dn)?), where d is the time it takes to compute the distance between any
two players and n is the number of players in the graph.

The first method will run faster (unless r & d2, which is unlikely). How-
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ever, there are two reasons to pursue the use of the second method. First,
relative matching may produce more accurate outcomes in terms of shared
experiences that are beneficial to both players. Second, in some domains, it
may be difficult to define an absolute ranking. As such, effort will be ex-
pended to devise an efficient algorithm for carrying out the second method.

In addition to these methodologies, known clustering algorithms will be
applied: Cobweb [25], Unimem [50], ID3 [70], LSI [18] and other statistical
methods. A comparison of the performance of these algorithms, measured

in terms of run-time and effectiveness of output, will determine the method

that works best for CEL.

6.4 Secret agents.

When no appropriate human playmates are available in the system, “secret”
software agents are used as substitutes. It may be important that these agents
behave intelligently, to pass a minimal Turing test so that a human user will
believe she is interacting with another human. Although for some users, it
may not matter if their opponents are humans or agents; experimental data
may shed light on this issue.

Since all communication in CEL is indirect, mediated by bitbots, there
are no natural language issues to consider. This is often the most difficult
obstacle to overcome in a Turing test. However, there are other critical issues
involved, for example to build an agent that will not win all the time, but
will be consistent, that will evolve and appear to be learning itself, but at
an honest pace, and that will maintain a believable presence in the system.
Since the actions of humans interfacing with the system are being observed,

it is possible to create such an agent by emulating these behaviors.
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At the playground level, there are two goals: (1) to produce a specific win
rate for the agent, adapting over time, and (2) to maintain an active and
human-like presence in the system. This means the agent should regularly
log in and out of CEL during the same time of day, as if in a certain time
zone; and the agent should stay logged into CEL for a variable amount of
time. It also means that the agent should not only wait to be challenged by
its playmates, but also challenge others.

At the game level, the agent’s behavior will probably be more closely
watched by the humans, since the agent’s moves directly affect the perfor-
mance of its human opponent. Two methods for controlling game behavior
will be tested. The first way is simply to specify a win rate for the game, and
let the human user drive. After each move by the human, the agent produces
a move in reponse, maintaining the specified win rate.

A second method of doing this is to use a neural network to control the
agent. The network is trained using supervised learning techniques. This
idea is being explored using the Tron data set (described above in section
6.2). In addition to storing the outcome of each game played, the actual
moves of most of the games have also been saved. This allows replaying of
any of these games. A neural network that plays Tron has been created and

trained by replaying games of individual players.

7 Experiments.

Experiments and data analysis will focus in two main areas: human learning

and machine learning. The following data will be collected:

e results of games played  for each game: timestamp, player id (human),
opponent id (human or agent), bithot id’s, score (for each bitbot), and

23



result (overall game score);

user demographics — for each user: age, location (U.S. state or country),
native language and gender®;

opinion poll users are asked to rank their experiences (optionally)
whenever they exit a playground: on a sliding scale of easy to hard and
boring to exciting;

email from users; and

interviews with students and teachers at our test site.

Three basic measurements will be used for the human data:

rate of return how frequently a player returns to the CEL web site
and how many games s/he plays during a visit;

rate of success the number of wins and losses incurred by a player;
and

domain coverage — the amount of the knowledge domain that a player
has experienced (i.e. been exposed to).

Analysis will show if there is any correlation amongst these values, particu-

larly between:

rate of return and rate of success;

rate of return and domain coverage;

rate of success and domain coverage;

rate of return, rate of success, domain coverage and user demographics;
rate of return, rate of success, domain coverage and opinion poll; and

rate of return, rate of success, domain coverage and direct user feedback
(email and interviews).

Human learning studies will center around comparing the following ele-

ments (see figure 4): player anonymity (either known or anonymous), play-

mate choice (either users have a choice of who to play against, or they have

no choice and the system arranges matches), and playgroup composition (ei-

ther open, meaning that players of all levels are placed in the same playgroup,

or restricted, where players are clustered appropriately).

5Users are asked to provide this information the first time they log into CEL. Supplying this data
is optional and its value is dubious, since it may be extremely noisy. However, standards are emerging
for analyzing these types of information statistically, and it may be possible to glean some measure of
honesty by comparing entries for location with IP addresses. The purpose here is to see if any trends in

return rate and/or success rate correlate to user demographics.
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Figure 4: Human learning experiments.

In addition, the algorithms used for player clustering will be compared.

Studies will examine:

e using absolute rank versus relative distance between players as the basis
for forming playgroups, and

e varying the value of € in the previous calculations.

Machine learning studies will focus on the adaptation and success of the

two types of agents. Various methods for bitbot selection will compare:

e using different genetic reproduction operators to control the composition
of a problem set,

e varying the mixture of easy and hard bitbots in a problem set, and

e trying several methods for building bitbot sets for a pair of users —
using only bitbots selected particularly for the “better” player or for
the “slower” player, or some combination of the two.

For these trials, one method for all players and different methods for different
players may be tried, based on a players’ rate of return and rate of success.
The effectiveness of the secret agents will be examined, to determine if the
agents successfully fool their human counterparts and if they have become
viable learning partners in the system. Analysis will compare game results
for human-human versus human-agent matches.
Finally, the notion of self-organizing curriculum (mentioned in section

6.1) will be explored. If an ordering can be found in the aggregate human
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data, those “stages” will be compared with standard curriculum. This may

give insight into whether using the co-evolutionary method to discover paths

within a curriculum area has merit.

8

Thesis outline

The preliminary outline of the thesis contains the following chapters:

1.

NS ok N

Introduction.
System architecture.
Problem selection.
Student modeling.
Player clustering.
Secret agents.

Conclusions and future work.

Reviews of related work and results of experiments will be incorporated

within chapters 3-6, according to the subject of each chapter.
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9 Schedule

Currently, the initial CEL system is up and running with one game (Keyit).
We have begun taking data from 4th and 5th grade children, in a controlled
computer laboratory setting at the Maria Hastings Elementary School in

Lexington, Massachusetts.

A tentative schedule for the work is as follows:

15 Mar 1999 | Gave proposal to Jordan
26 Mar 1999 | Began co-evolution of bitbots
6 Apr 1999 Released simple secret agents
1 May 1999 | Release arithmetic game
15 May 1999 | Implement initial player clustering algorithm
1 Jun 1999 Post CEL link on DEMO home page, Tron
and HC-gammon pages
Begin preliminary analysis of bitbot data to
determine if learning is being detected and tracked
15 Jun 1999 | Set up eight human experiments to run during the summer
1 Jul 1999 Complete chapter 2
1 Aug 1999 | Complete clustering literature survey (ch 5)
Complete student modeling literature survey (ch 4)
15 Aug 1999 | Analyze student modeling experiments (ch 4)
(preliminary)
1 Sep 1999 Analyze player clustering experiments (ch 5)
(preliminary)
15 Sep 1999 | Complete chapter 4
(add final data analysis in January)
1 Oct 1999 Complete chapter 5
(add final data analysis in January)
15 Oct 1999 | Complete evolutionary computation literature survey (ch 3)
Complete neural network literature survey (ch 6)
1 Nov 1999 Analyze bitbot experiments (ch 3)
Analyze secret agent experiments (ch 6)
15 Nov 1999 | Complete chapters 3 and 6
(add final data analysis in January)
15 Dec 1999 | Complete chapters 1 and 7
15 Jan 2000 | Defense
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