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AbstractCan adaptive behavior be useful in a human learning environment? The workpresented here proposes that introducing adaptive agents to a human learning com-munity can be e�ective in several ways:1. to guide selection of appropriate problems for human learners,2. to embody \self-organizing" curricula,3. to provide simple student models,4. to impersonate human learning partners, and5. to facilitate indirect human-human interaction.Taking a population-based approach and using evolutionary computation method-ologies, we bring two types of software agents into an Internet learning community.Inside our CEL (Community of Evolving Learners) system, humans play compet-itive, educational games, openly or incognito, with each other and with softwareagents, while the populations of learners { human and agent { advance.The overarching goal of this research is to investigate the various factors thatcontribute to this type of environment and their e�ects on both human and machinelearners. We wish to demonstrate that the progress of each student can be trackedand that the agent populations adjust according to changes in human behavior,taken both on an individual and aggregate basis. Hopefully, the result will be thathumans participants frequent the system over time and become active members ofthe learning community.



1 Introduction.With the advent of the Internet, humans have found new and exciting waysto communicate. The explosive popularity of electronic mail, news groups,instant messaging and on-line chat is proof that, like the telephone, computernetworked communication is here to stay.These new forms of human interaction allow us to establish the notion ofa virtual community, wherein humans in diverse places and time zones canexchange thoughts and share experiences just as in a traditional community,but the need for co-located participants is now eliminated.Humans are not alone in populating the Internet. Software agents alsoinhabit cyberspace | small computer programs that are designed to helphuman users accomplish speci�c tasks [53, 54]. Agents have been createdto perform many di�erent functions; and Internet agents are gaining promi-nence as browsing assistants [52], matchmakers [27, 46], recommenders [5]and �lterers of email [31, 49] and news group messages [47]. Some agents usemachine learning techniques to adapt their behavior to the needs of individ-ual users [71, 5].The work presented here brings adaptive software agents into an Internetenvironment where agents help human users learn and, in turn, learn howto do their own job better through their interactions with the humans. In-side the Community of Evolving Learners (CEL), humans play competitive,educational games, openly or incognito, with each other and with softwareagents; and the learners { human and agent { advance.Within the CEL framework, there are two types software agents: (1)bitbots and (2) \secret" agents. Bitbots represent little bits of knowledge1



to be learned; a population of bitbots is a problem set | i.e. the contentof a game. For each human user, an individualized population of bitbots iscreated and adapts based on that human's changing needs.Inside CEL, pairs of humans engage in competitive games. Their individ-ual bitbot populations are merged, and the composite sets of bitbots act asproxies in their matches.The CEL system attempts to create appropriate matches between humansin such a way as to stimulate learning. However, CEL is an open systemon the Internet and does not control who is logged in. It is possible thatfor a given human at a given time, no appropriate human partner is alsoconnected. Therefore, CEL provides \secret" agents that act as substitutelearning partners and emulate the behavior of human players. These agentsalso adapt, adjusting to the needs of the aggregate human population.To enable learning in both types of agents, a population-based approachis taken and evolutionary computation techniques are applied. Some of themethodologies were used in earlier work [30, 29, 80, 81], where the notion ofco-evolution between populations of humans and software agents was intro-duced.In co-evolutionary machine learning [36, 3, 58, 73, 79, 41, 69], two (ormore) populations of agents compete against each other. In successful appli-cations of this technique, an \arms race" spiral develops where each popu-lation spurs the other to advance, and the result is continuous learning forboth populations. Work examining the dynamics of co-evolutionary learningenvironments has given insight into phenomena that contribute to success[15, 10, 69, 24]; in particular (1) it is important to select appropriate experi-ences for individual learners | pairing a novice to compete with an expert2



will not help either player advance; and (2) it is crucial to prevent collusionbetween members of competing populations | two players agree to \draw"each other so that neither will be eliminated, but also neither will learn.The work presented here carries these insights into the realm of humanlearning. The co-evolutionary approach is applied in three ways. First, apopulation of bitbots co-evolves with each human user. Second, a populationof secret agents adapts with the population of human users taken as a whole.Third, humans compete against each other in the games they play. It isrecognized that the use of competition in education is controversial. However,if participants are anonymous and success rates are controlled, many of themore contentious issues may be superseded in favor of the more powerfulmotivational aspects that competition can provide.2 Contribution.The main contribution of this thesis will be to investigate the e�ects of adap-tive environments on both human and machine learners, demonstrated in anInternet community where humans play competitive, educational games witheach other and with software agents, and where the learners { human andagent { are both evolving. We hope to show that the progress of a studentcan be tracked, that the system can adapt in its selection of appropriatecompetitors and game content, and that the proper choices result in humanparticipants becoming active members of the learning community.There are several aspects of CEL that serve to support these claims anddistinguish this project from other Internet communities and intelligent tu-toring work: 3



1. Adaptive behavior approach to problem selection. A new type of agent isintroduced, called a bitbot, that represents little \bits" of knowledge tobe learned | and is actually the content of each game. A population ofbitbots constitutes a problem set. For each human user, a populationof bitbots is instantiated, and, using evolutionary programming tech-niques, adapts as the user progresses (see section 6.1). We believe thatwe are the �rst to apply adaptive behavior methodologies to an intelligenttutoring system.2. Self-organizing curriculum. While the performance of each human drivesthe selection of individual bitbot populations customized for each user,for the aggregate human population, the sequence in which bitbots arechosen may generalize into an ordered, hierarchical list. Each tier couldbe considered a step within an incremental, or staged, learning envi-ronment, where the stages are evolved, not engineered. We believe thisto be a new type of \self-organizing curriculum", one that emerges asthe system is used | feasible because of the mass human data collectionopportunities enabled by the Internet.3. Simple, evolving student model. A student's performance with the bit-bots serves as a model of that student's abilities. This model evolveswith the student and requires no domain-dependent engineering to build(aside from de�ning the bitbots themselves) (see section 6.2). This ap-proach is quite di�erent from more traditional user modeling techniques,which are typically highly engineered to the task domain (see section 4).We believe that this simple, evolving student model will be su�cient toguide appropriate problem selection and opponent choice.4



4. Playgroup control. Humans are placed in appropriate playgroups, guidedby their student models and a prediction of how they will performagainst each other (see section 6.3). They can only challenge playmates(opponents) from this group, whose membership is controlled by ourserver with the aim of producing a desired outcome (i.e. win rate) foreach member across a series of interactions. This notion of only givingplayers access to appropriate playmates distinguishes CEL from othergame playing sites. Typically, users can see everyone else who is loggedin at a given time (e.g. games.yahoo.com). We believe that exercisingcontrol over a user's playgroup will allow us to experiment with variousmembership compositions, to help determine what \appropriate oppo-nent choice" really means.5. Indirect player interaction. CEL users communicate indirectly, withagents acting as mediators. When two users play a game in CEL, eachcommunicates directly with his/her bitbots; and each user's bitbots pass\moves" to their opponent's bitbots. In other Internet communities (e.g.MUD's), users communicate directly in a \chat" environment; this is acontroversial setup for children, due to privacy and safety concerns foryoung Internet users, as well as curricular issues like ensuring that par-ticipants stay \on task". We believe that CEL's method of indirect,mediated human-agent-human interaction addresses these concerns ef-fectively.6. Creative, graphical, individualized player identi�cation. CEL is a graph-ical environment, and players are identi�ed to others only through 2-dimensional icons, called IDsigns. A simple web-based tool allows usersto create and edit their own IDsigns. In most Internet communities,5



users are known to others by name (usually an alias). We believe thatallowing users to create and edit their own icons graphically helps sparkinterest for young players, provides an outlet for their creativity, as wellas preserving user anonymity.7. Secret agents as learning partners. When no appropriate human oppo-nents are available in the system, \secret" software agents are instan-tiated to act as substitutes (see section 6.4). It may be important forthese agents to behave intelligently enough for a human user to believeshe is interacting with another human. Neural networks control theseagents, trained using a novel approach that takes advantage of humanbehavior observed in the system. While we do not claim to be able topass a Turing Test, we believe that providing \secret" software agentsto emulate human learning partners enables the system to maintain thedesired playgroup control (as above) without making users wait for ap-propriate mates to log on to the site.Finally, a disclaimer: there will be no attempt to prove that as a directresult of using the system, learning has occurred on the part of the humanswho participate. The skills tested in this initial implementation of CEL arefundamentals (like spelling and arithmetic); the target user group is primaryaged school children, and participants will be exposed to many other stimulifor advancing these skills outside of CEL.It is hoped that future work will extend the games in CEL beyond fact-learning applications. But, just as a child must be able to spell before she canwrite, or be able to add before she can manipulate di�erential equations, CELbegins with simple games. A longterm goal is to use the CEL framework to6



enable more complex problem solving scenarios and to host further human-human and human-agent learning experiments.3 Motivation.In the last two decades, the invention and rise in popularity of personalcomputers has brought about a new and burgeoning market for educationalsoftware. Subsequently, with the introduction of computers into schools,the market has continued to expand and educational software has in�ltratedclassrooms, with mixed results. Today, schools are being \wired" at a rapidrate, giving teachers and students direct access to the Internet. Yet, withall this vast and varied hardware and software, the predominant paradigminvolves one student sitting at one computer using one program | alone.However, it has been shown throughout history that group learning can bevery e�ective [84, 83, 40], especially when participants cooperate. In contrast,the role of competition in human learning, particularly in formal education, iscontroversial [63, 43, 40, 39]. Yet competition is a central organizing principlein western society. Athletic events, political campaigns, legal cases, industrialbattles, military encounters, Nobel prizes | all are \races" to be won or lost.By eliminating competition from schools, are we ill-preparing our children tothrive as adults in the \real world"?The work presented here explores the use of anonymous competition, cus-tomized to the individual, in a human learning environment. Perhaps iflearners' identities and ages are kept hidden and win rates are controlled, thenmany of the more contentious issues associated with the use of competitionin education may be superseded in favor of the more powerful motivational7



aspects that it can provide.3.1 Machine learning.The general idea of machine learning { where computer programs advance,developing better and more e�cient ways to accomplish given tasks { hasbeen around since (at least) the 1950's and has often been thought of in thecontext of game playing [75, 57, 26, 9, 90, 22]. Games are a good domainfor such research, since they typically have a �xed goal and a �nite set ofprede�ned rules that allow a player to achieve the goal within a reasonableamount of time. Chess, checkers and backgammon have been a few of themore popular games used for these studies.A game can be played by using a certain strategy, or set of strategies |a method and order for applying the rules of the game, with the intent ofachieving the �xed goal. If we sat down and enumerated all the possible waysof playing a game, the result would typically be a huge list. So the questionbecomes a matter of search. Given a very large list of possible strategies, howcan we �nd the ones that will result in achieving the game's goal?The following is an evolutionary programming approach [26, 37, 45]: ratherthan try to engineer a winning strategy, enumerate a manageable number ofstrategies, use these to play games and see how well they do. Then keepthe strategies that do well and use selection and reproduction techniques toreplace the ones that do poorly with other strategies that have not beentried yet. Using this method, a population of successful strategies is built upgradually. At any time, the population will represent some ways of playingthe game; eventually, the population will contain the optimal way(s).8



3.2 Human learning.A key concept in human learning is \learning by doing." Constructionism[64, 65, 72] is a formal de�nition of this notion applied to education. Forhumans, motivation is of primary concern. While \practise makes perfect,"students need to be motivated to practise in the �rst place | and to practisecorrectly, not to practise mistakes (otherwise the mistakes will be learnedinstead).How can students be motivated to practise? Today's computer gamesare �lled with fancy animations and nifty audio. In order to vie for a child'sattention, a software application has to be able to compete with this standard| or else pro�er something completely di�erent. Humans are naturally socialcreatures. If a software application o�ers a learning environment that is acommunity, then humans should be encouraged to participate purely by theirinnate desire for human contact, even virtual human contact. The amazingpopularity of text-based MUD's1 is such an example, and many have usedthis to their advantage in building successful educational MUD's [12, 33, 23].If an environment encourages students to keep practising, then learningshould follow naturally. In an arti�cial co-evolutionary learning situation,where two (or more) populations of agents are advancing, the learning en-vironment consists of other learners | students are each other's teachers.We posit that this is also the case in our CEL environment, and hypothesizethat some of the features that contribute to the success of a co-evolutionarylearning environment will also be pertinent here. As such, our environmentshould be constructed to (1) provide appropriate experiences for individual1Multi-User Dungeon/Dimension/Domain 9



learners; and (2) prevent collusion between participants.What does \appropriate experience" mean? Fundamentally, if a studentis given problems that are too hard, then he will answer them by guessingand will not learn, or may even learn the wrong answers; if a student is givenproblems that are too easy, then he will get bored when answering themand may provide inaccurate answers due to lack of attention; if a studentis given problems that are \just right," then he will be challenged appro-priately and learning will take place. In an environment where students arelearning from each other, the notion of appropriate experience also appliesto matching students with proper learning partners. This concept has beenformalized for arti�cial learners in the Meta-Game of Learning (MGL) hy-pothesis [69, 80] and for human learners, is related to Vygotsky's \zone ofproximal development" [95] and to \sca�olding" [38] in intelligent tutoringsystems.How can \collusion" be prevented? One problem with a MUD is thatactivity and communication are not controlled. Users are free to \say" any-thing they want. In some educational contexts { such as learning creativewriting { open communication is desirable and necessary. But in others {such as learning multiplication tables { this is not necessary and may noteven be desirable, because bored students will be inclined to stray from thecurricular task and shift the discussion to other topics2.Another issue with unrestricted communication, especially on the Inter-net, is that parents are worried about who their children are communicatingwith. Though everyone in a community may be using an alias, an anonymousexchange of inappropriate ideas or language may still occur. Providing a safe2This could also occur in the creative writing domain.10



environment in which young students can interact is of primary concern.If contact between participants is mediated arti�cially, where softwareagents enable indirect human-human interaction via direct human-agent in-teraction, then the agents can force human participants to stay \on task",thereby preventing collusion and addressing safety issues as well.4 Some related work.This work �nds itself at the intersection of several areas of human and ma-chine learning, particularly intelligent tutoring systems (ITS), student mod-eling, collaborative learning and adaptive behavior. These �elds encompassa vast literature which will be reviewed thoroughly in the thesis. Many per-tinent references are cited throughout the text. Some others are cited below.Seminal work in the ITS �eld began with frame-based tutoring systems[11] and continued to focus in areas like constructing rules [2] and modelingstudent's misconceptions [93, 85]. Some of these ideas have been developedinto systems tested in laboratories, classrooms and work places [42, 77].More recent work has continued to explore these areas in more depth.Student modeling has been aided by statistical techniques [56, 6, 94] aswell as arti�cial intelligence methods like case-based reasoning [1]. Otherwork has examined customizing to the needs of individual students in web-based systems, for example ELM-ART [13], CALAT [62] and MANIC [86].These require considerable domain engineering on the part of the system de-signer/programmer and signi�cant psychological testing to reveal the granu-larity of a single curriculum area.Others are working to enable Internet learning communities; projects such11



as CoVis [66], KIE [8], Virtual Classroom [92], Belevedere [87], PuebloMOO[96] and MOOSE crossing [12] are a few of the more successful examples.However, we believe that no one else is examining the role of competition inthis type of virtual learning environment.5 A brief tour of CEL.CEL is an Internet-based system where students engage in two-player edu-cational games. These games are easy to use and provide practise at basicskills (e.g. keyboarding, arithmetic, geography, spelling). The system is builtusing HTML, CGI-bin, C and Java and is accessible from a web browser likeNetscape3.Users log into the system with a personal user name and password. Onceinside, users are represented by two-dimensional icons called IDsigns whichidentify them to other users. In order to maintain the anonymity that someCEL experiments require, and for reasons of privacy, the user name (andpassword) are never shown to others. Users access a tool called the IDsignerto create and modify their IDsigns (�gure 1a). Once a user is connected tothe system, she selects the game that she would like to play (�gure 1b).

3currently the only browser fully tested 12
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(c) (d)Figure 1: The CEL system.
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Then the user is placed in an open playground, where she is shown amatrix containing IDsigns of other users who are currently logged into thesystem and are playing her chosen game (�gure 1c). These are her playmates ;together they comprise her playgroup. By clicking on a playmate's IDsign,the user challenges the playmate to a match.During the course of a game, feedback is provided to each user, updatingthe moves of the opponent in near real-time. However, the match may notoccur simultaneously at all if, for example, a network link is slow or one useris interrupted. In this case, the system provides to each user whatever movesare available from the opponent.An example of the keyboarding game called Keyit is shown in �gure 1d.In this game, users are each given up to 10 words to type as fast as they can,maintaining 100% accuracy. The two players need not type the words at thesame time. The timer begins when a player enters the �rst letter of a word,time is measured using the system clock on the client's computer and scoreis reported in hundredths of a second.Once a user has completed her game, her browser returns her to theplayground and she is free to engage in another match with another (or thesame) playmate.6 Approach.CEL takes an adaptive behavior approach that sets it aside from other in-telligent tutoring systems. The issue of providing students with appropriatelearning experiences becomes a question of �nding the right set of knowledgebits (i.e. bitbots) for that student to interact with. This question can be re-14



duced to a search problem { similar to �nding the right game playing strategy{ and is attacked with a co-evolutionary method. The game is to challengethe student, and the goal is to get the student to provide the right answer acertain percentage of the time. A population of bitbots is generated and eval-uated according to how well they achieve the goal | of having the studentprovide the right answers a certain percentage of the time. When a studenthas interacted with a small number of bitbots, the population is replenishedfor further interactions, keeping some bitbots and replacing others.Note that the students are learning. A set of bitbots that achieves thedesired goal at one point in time may not solicit the same result severalweeks or months later. This means that one �xed solution will never befound because the search is trying to optimize to a moving target. Henceco-evolutionary learning, wherein the two populations { students and bitbots{ are learning simultaneously and through their interactions with each other.6.1 Problem selection.Based on earlier work [80], a simple agent called a bitbot has been developed,using concepts adapted from genetic algorithms and evolutionary program-ming [26, 37, 45]. A bitbot represents a small \bit" of knowledge that astudent must learn, encoded in a genetic bit string. Bitbots currently comein two varieties, to support word and number games.The de�nition of a bitbot is domain-speci�c. An example word bitbot isshown in �gure 2a, for the word blue. The word bitbots are used for bothspelling and keyboarding games, so there is an attempt to capture featuresof a word that might make it easier or harder to spell or type and to usethese to de�ne seven genes, which are concatenated to form a chromosome.15



2222 = number of 2-letter consonant clusters
CCCC = number of consonants

= number of vowelsVVVV
SSSSSS = scrabble score
KKKK = keyboarding level
LLLLL = length of word

333 = number of 3-letter consonant clusters

where:

blueword =

chromosome =
00100  1000  000110  0010  0010  0001  000

LLLLL  KKKK  SSSSSS  VVVV  CCCC  2222  333

    4     8       6     2     2     1    0

blueword =

blueword =

acreword =

database

word = meat

database

(a) chromosome for word bitbot "blue".

mutate

chromosome =

chromosome =
    4     8       6     2     2     1    0

00100  1000  000110  0010  0010  0001  000

    4     7       6     2     2     1    0

00100  0111  000110  0010  0010  0001  000

(c) sample crossover of "blue" with "red".(b) sample mutation of "blue".

word = red

chromosome =

chromosome =

chromosome =

    3     2       4     1     2     0    0

    4     8       6     2     2     1    0

00100  1000  000110  0010  0010  0001  000

00011  0010  000100  0001  0010  0000  000

00100  1000  000110  0010  0010  0000  000

    4     8       6     2     2     0    0

Figure 2: A sample word bitbot.The selection of these features is based merely on empirical evidence, withthe exception of the \keyboarding level."4A population of bitbots constitutes a problem set. Evolutionary pro-gramming techniques are used to de�ne an initial population of bitbots forinteracting with a new user and to produce subsequent populations of bitbotsas the user progresses.Various techniques will be tested for forming this initial population and for4There is a standard order in which keys are introduced to students learning typing. The keys arepresented in eleven groups; each group is considered a \keyboarding level" here.16



producing subsequent generations. In general, an initial population is chosenat random; however, it may be more e�ective to impose some limitations onthis initial selection. If the �rst set of bitbots seen by a new user happensto contain members that are all too hard or all too easy, then the user maynot get a good �rst impression of the system and may be uninterested inparticipating further. Rather it may be more e�ective to form an initial setbased on a uniform distribution amongst the various values of bitbots.Reproductive operators like mutation and recombination have all provene�ective for various tasks using genetic algorithms. Currently, mutation andsingle-point crossover are being used to produce members of each next gener-ation of bitbots. An example is illustrated in �gures 2b and 2c. The numericchromosomes from the current population are transformed into chromosomesfor the next generation. For each new (valid) chromosome, a correspondingword is located in a database. The entire set is the content of the user's nextgame.The selection of appropriate bitbots for each user to interact with is crucialto the success of the system | bitbots that are too hard will frustrate theuser; bitbots that are too easy will bore the user. Since the CEL systemexists on the web, where thousands of other sites are just a click away, theseissues are perhaps even more important than with other applications. Thesystem has to grab a student right away, challenge her enough to keep herinterest and entice her to return.A human's performance drives the selection of bitbots. For the aggregatehuman population, the sequence in which bitbots are chosen may generalizeinto an ordered, hierarchical list. Each tier could be considered a step withinan incremental, or staged, learning environment [48], where the stages are17



evolved, not engineered. This can be considered a self-organizing curriculum,and this technique could have signi�cant impact for future intelligent tutoringsystems.6.2 Student modeling.For each student, her performance with a set of bitbots gives an indication ofhow well that student has acquired those bits of knowledge that the bitbotsrepresent. This is viewed as a simple student model.The model is a by-product of the design of the CEL system, and it is ob-tained through a student's normal interactions with the system. No domain-dependent engineering is involved in constructing this model, outside of thatwhich is done to de�ne the bitbots themselves. This type of model is di�erentfrom others found in the literature, e.g. [56, 6, 94, 1]. Experiments will beconducted to see if such a simple model is useful | a model that is basedexclusively on a user's performance with the system, what the user did ratherthan how the user did it.The most common function for a user model is to guide subsequent in-teractions between the particular user and the system. In CEL, this hasrami�cations in two areas. First, it can e�ect which bitbots are selectedfor the user to interact with. Second, it can guide matching of appropriateopponents. Each of these is addressed separately in sections 6.1 and 6.3,respectively.Preliminary experiments are being conducted based on the data from anearlier experiment [30, 29], which produced a large database of performancestatistics between human Internet users and software agents playing a simplevideo game called Tron. The agents were arti�cial players, controlled by18



genetic programs. The results of over 200,000 games comprise this data set,played by approximately 4000 human users and 3000 agents.In this context, a user model is conceived for each human player as a largevector containing the averaged results over all encounters with every agent.This is a sparse vector because, while there are over 3000 agents existing,most humans played an average of about 87 games (although 19 users haveplayed over 1000 games apiece), which means that most humans met lessthan 3% of the agents.A CEL environment has been built for Tron { called the Tronament { thathas the same system architecture as the educational CEL, but participantsengage in games of Tron, rather than educational applications like Keyit.This setup is being used to experiment with the vectors described above, tosee if this type of model can be used to a�ect three areas: problem selection,playgroup formation, secret agent usage. This will be a useful �rst step, sincethere already exists a substantial data set to guide the processes as well as alarge user base playing Tron. The assumption is that results obtained fromthese experiments will carry over directly to the educational applications.6.3 Player clustering.Players are clustered into playgroups containing potential playmates. It iscritical to form a playgroup for each player such that the playmates thereincan provide appropriate challenges. Of course, given the unpredictability ofhuman behavior, it will be impossible to surmise precisely what a potentialplaymate's behavior will be, but an educated guess is made. A record ofpredictions and outcomes will be maintained in order to obtain a measure ofthe reliability of the predictive mechanism, as it applies to each user.19



Taking this prediction reliability rating and each user's student model asinput, users are clustered and playgroups are formed. These groupings arehighly dynamic, as users enter and exit the system and as games are playedand the student model and prediction ratings change.A playgroup is represented conceptually as an undirected graph, whereeach player is a vertex in the graph. Edges are drawn between players whoare considered to be appropriate playmates. Edges are updated as playersenter and exit the game and as games are played and users progress.
2

3

5

4

6

7

1

Figure 3: The graph of a playgroup.Player 1's playgroup contains players 4 and 7; player 2's playgroup con-tains players 6 and 7; player 3's playgroup contains player 6; player 4'splaygroup contains player 1 and 6; player 5 has no playmates; player6's playgroup contains players 2, 3, 4 and 7; and player 7's playgroupcontains players 1, 2 and 6.An example is shown in �gure 3. A player only sees those players that arein his playgroup. In the example shown, this means that even though players1 and 2 are both connected to the same game at the same time, they do notsee each other's IDsigns in their playgrounds because the game server doesnot deem them to be appropriate playmates. Connections are bi-directional,20



so (e.g.) if player 1 sees player 7, then player 7 also sees player 1. However,links are not transitive: players 1 and 7 see each other, players 7 and 2 seeeach other, but players 1 and 2 do not.This notion of only letting players see appropriate playmates distinguishesCEL from other game playing web sites. Typically, users can see everyoneelse who is currently logged in; this is the method used at the popular sitegames.yahoo.com, for example. But in order to maintain control over successrates in CEL, users are only given the opportunity to challenge others whoare near to their own skill level.Two algorithms are being explored for de�ning playgroups, (which isequivalent to determining the edges of the graph in �gure 3). Each usesa di�erent general approach, one absolute and one relative.In the �rst approach, all players are ranked according to an absolute scaleand only vertices of players whose ranks are within a certain epsilon (�) ofeach other are connected. This algorithm maintains an auxiliary index onthe list of players, sorted by rank. Edges are drawn on the graph by slidinga window of width 2 � � down the indexed list of players and connecting allplayers that are inside the window. The cost of this method is O(r � n2),where r is the time it takes to calculate the rank of each player and n is thenumber of players in the graph.The second method computes a relative distance between every pair ofplayers in the graph and only connects vertices of players whose distancesare within a certain epsilon (�) of each other. The cost of this method isO((dn)2), where d is the time it takes to compute the distance between anytwo players and n is the number of players in the graph.The �rst method will run faster (unless r >� d2, which is unlikely). How-21



ever, there are two reasons to pursue the use of the second method. First,relative matching may produce more accurate outcomes in terms of sharedexperiences that are bene�cial to both players. Second, in some domains, itmay be di�cult to de�ne an absolute ranking. As such, e�ort will be ex-pended to devise an e�cient algorithm for carrying out the second method.In addition to these methodologies, known clustering algorithms will beapplied: Cobweb [25], Unimem [50], ID3 [70], LSI [18] and other statisticalmethods. A comparison of the performance of these algorithms, measuredin terms of run-time and e�ectiveness of output, will determine the methodthat works best for CEL.6.4 Secret agents.When no appropriate human playmates are available in the system, \secret"software agents are used as substitutes. It may be important that these agentsbehave intelligently, to pass a minimal Turing test so that a human user willbelieve she is interacting with another human. Although for some users, itmay not matter if their opponents are humans or agents; experimental datamay shed light on this issue.Since all communication in CEL is indirect, mediated by bitbots, thereare no natural language issues to consider. This is often the most di�cultobstacle to overcome in a Turing test. However, there are other critical issuesinvolved, for example to build an agent that will not win all the time, butwill be consistent, that will evolve and appear to be learning itself, but atan honest pace, and that will maintain a believable presence in the system.Since the actions of humans interfacing with the system are being observed,it is possible to create such an agent by emulating these behaviors.22



At the playground level, there are two goals: (1) to produce a speci�c winrate for the agent, adapting over time, and (2) to maintain an active andhuman-like presence in the system. This means the agent should regularlylog in and out of CEL during the same time of day, as if in a certain timezone; and the agent should stay logged into CEL for a variable amount oftime. It also means that the agent should not only wait to be challenged byits playmates, but also challenge others.At the game level, the agent's behavior will probably be more closelywatched by the humans, since the agent's moves directly a�ect the perfor-mance of its human opponent. Two methods for controlling game behaviorwill be tested. The �rst way is simply to specify a win rate for the game, andlet the human user drive. After each move by the human, the agent producesa move in reponse, maintaining the speci�ed win rate.A second method of doing this is to use a neural network to control theagent. The network is trained using supervised learning techniques. Thisidea is being explored using the Tron data set (described above in section6.2). In addition to storing the outcome of each game played, the actualmoves of most of the games have also been saved. This allows replaying ofany of these games. A neural network that plays Tron has been created andtrained by replaying games of individual players.7 Experiments.Experiments and data analysis will focus in two main areas: human learningand machine learning. The following data will be collected:� results of games played | for each game: timestamp, player id (human),opponent id (human or agent), bitbot id's, score (for each bitbot), and23



result (overall game score);� user demographics | for each user: age, location (U.S. state or country),native language and gender5;� opinion poll | users are asked to rank their experiences (optionally)whenever they exit a playground: on a sliding scale of easy to hard andboring to exciting ;� email from users; and� interviews with students and teachers at our test site.Three basic measurements will be used for the human data:� rate of return | how frequently a player returns to the CEL web siteand how many games s/he plays during a visit;� rate of success | the number of wins and losses incurred by a player;and� domain coverage | the amount of the knowledge domain that a playerhas experienced (i.e. been exposed to).Analysis will show if there is any correlation amongst these values, particu-larly between:� rate of return and rate of success;� rate of return and domain coverage;� rate of success and domain coverage;� rate of return, rate of success, domain coverage and user demographics;� rate of return, rate of success, domain coverage and opinion poll; and� rate of return, rate of success, domain coverage and direct user feedback(email and interviews).Human learning studies will center around comparing the following ele-ments (see �gure 4): player anonymity (either known or anonymous), play-mate choice (either users have a choice of who to play against, or they haveno choice and the system arranges matches), and playgroup composition (ei-ther open, meaning that players of all levels are placed in the same playgroup,or restricted, where players are clustered appropriately).5Users are asked to provide this information the �rst time they log into CEL. Supplying this datais optional and its value is dubious, since it may be extremely noisy. However, standards are emergingfor analyzing these types of information statistically, and it may be possible to glean some measure ofhonesty by comparing entries for location with IP addresses. The purpose here is to see if any trends inreturn rate and/or success rate correlate to user demographics.24
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restrictedFigure 4: Human learning experiments.In addition, the algorithms used for player clustering will be compared.Studies will examine:� using absolute rank versus relative distance between players as the basisfor forming playgroups, and� varying the value of � in the previous calculations.Machine learning studies will focus on the adaptation and success of thetwo types of agents. Various methods for bitbot selection will compare:� using di�erent genetic reproduction operators to control the compositionof a problem set,� varying the mixture of easy and hard bitbots in a problem set, and� trying several methods for building bitbot sets for a pair of users {using only bitbots selected particularly for the \better" player or forthe \slower" player, or some combination of the two.For these trials, one method for all players and di�erent methods for di�erentplayers may be tried, based on a players' rate of return and rate of success.The e�ectiveness of the secret agents will be examined, to determine if theagents successfully fool their human counterparts and if they have becomeviable learning partners in the system. Analysis will compare game resultsfor human-human versus human-agent matches.Finally, the notion of self-organizing curriculum (mentioned in section6.1) will be explored. If an ordering can be found in the aggregate human25



data, those \stages" will be compared with standard curriculum. This maygive insight into whether using the co-evolutionary method to discover pathswithin a curriculum area has merit.8 Thesis outlineThe preliminary outline of the thesis contains the following chapters:1. Introduction.2. System architecture.3. Problem selection.4. Student modeling.5. Player clustering.6. Secret agents.7. Conclusions and future work.Reviews of related work and results of experiments will be incorporatedwithin chapters 3-6, according to the subject of each chapter.
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9 ScheduleCurrently, the initial CEL system is up and running with one game (Keyit).We have begun taking data from 4th and 5th grade children, in a controlledcomputer laboratory setting at the Maria Hastings Elementary School inLexington, Massachusetts.A tentative schedule for the work is as follows:15 Mar 1999 Gave proposal to Jordan26 Mar 1999 Began co-evolution of bitbots6 Apr 1999 Released simple secret agents1 May 1999 Release arithmetic game15 May 1999 Implement initial player clustering algorithm1 Jun 1999 Post CEL link on DEMO home page, Tronand HC-gammon pagesBegin preliminary analysis of bitbot data todetermine if learning is being detected and tracked15 Jun 1999 Set up eight human experiments to run during the summer1 Jul 1999 Complete chapter 21 Aug 1999 Complete clustering literature survey (ch 5)Complete student modeling literature survey (ch 4)15 Aug 1999 Analyze student modeling experiments (ch 4)(preliminary)1 Sep 1999 Analyze player clustering experiments (ch 5)(preliminary)15 Sep 1999 Complete chapter 4(add �nal data analysis in January)1 Oct 1999 Complete chapter 5(add �nal data analysis in January)15 Oct 1999 Complete evolutionary computation literature survey (ch 3)Complete neural network literature survey (ch 6)1 Nov 1999 Analyze bitbot experiments (ch 3)Analyze secret agent experiments (ch 6)15 Nov 1999 Complete chapters 3 and 6(add �nal data analysis in January)15 Dec 1999 Complete chapters 1 and 715 Jan 2000 Defense
27
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