
2/26/01 1:07 PM 1

MC140: lecture #14
today’s topic:

global variables
logical operators

example from last time
2-dimensional arrays

2/26/01 1:07 PM 2

global variables.

• variables must be declared before
they are used

• we have used variables within main()
and within functions

• global variables
– declared outside main() and outside a

function definition, usually at the top of
the program, after # directives

– can be “seen” anywhere

2/26/01 1:07 PM 3

logical operators.
• in C, there are 3 logical operators:

meaning C operator

 NOT !

 AND &&

 OR ||

• they are used for complementary and complex
truth expressions
– where a simple truth expression is: (z == ‘Q’)
– complement is: !(z == ‘Q’)
– complex example: (z == ‘Q’) || (z == ‘q’)

2/26/01 1:07 PM 4

#include <stdio.h>

#include <ctype.h>

#include <string.h>

// declare global variable

char *s = “The tendency of people to focus on the meaning of sentences influences their
ability to notice some of the obvious features.”

// function prototypes

int issameletter(char c1, char c2);

int countletter(char c, char *s);

int countwords(char *);

int countword(char *w, char *s);

int main(void) {

 printf(“number of F’s = %d\n”,countletter(‘f’, sent);

 printf(“number of words = %d\n”,countwords(s));

 printf(“number of THE’s = %d\n”,countword(“THE”,s));

} /* end of main() */

example from
last time.

2/26/01 1:07 PM 5

/* This function takes two character arguments,
“c1” and “c2”. It and returns true (1) if they
are the same and false (0) if they are not the
same. The function uses the ctype library
function “tolower” to make the function
insensitive to case. */

int issameletter(char c1, char c2) {

return(tolower(c1) == tolower(c2));

} /* end of issameletter() */

2/26/01 1:07 PM 6

/* This function counts the number of occurrences of
the argument character “c” inside the argument
string “s”. The function calls the function
“issameletter()” to compare each character in “s”
with “c”. The function returns the number of
occurrences of “c” in “s”. The function returns 0
if “c” is not found in “s”. */

int countletter(char c, char *s) {

int i, count=0;

for (i=0; i<strlen(s); i++) {

 if (issameletter(s[i],c)) {

 count++;

 } /* end if */

 } /* end for i */

return(count);

} /* end of countletter() */

2/26/01 1:07 PM 7

/* This function counts the number of words in the argument
string “s”. The function uses a naïve algorithm, counting
the number of spaces in the argument string and adding 1 to
that count (to account for the last word in the string).
This function will return an erroneous value if words are
separated by more than one space and/or if the last word in
the sentence is followed by one (or more) spaces. The
function uses the ctype library function “isspace” to
determine if a given character is a space. */

int countwords(char *s) {

 int i, count = 0;

 for (i=0; i<strlen(s); i++) {

 if (isspace(s[i])) {

 count++;

 } /* end if */

 } /* end for i */

 return(count+1);

} /* end of countwords() */

2/26/01 1:07 PM 8

/* this function counts the number of occurrences of
the argument word “w” in the argument string “s”. */

int countword(char *w, char *s) {

 int i, j, length_w, count = 0;

 length_w = strlen(w);

 for (i=0; i<strlen(s)-length_w; i++) {

 j = 0;

 while ((j < length_w) &&

 (issameletter(s[i+j],w[j]))) {

 j++;

 } /* end while j */

 if ((j == length_w) && (isspace(s[i+j]))) {

 count++;

 } /* end if */

 } /* end for i */

 return(count);

} /* end of countword() */

2/26/01 1:07 PM 9

arrays.
• recap:

– elements: the related items
– length: number of elements
– index: position number of each element
– example: int x[25];

• can be multi-dimensional
– strings are one-dimensional char arrays

• a 2-dimensional array is called a matrix
– example: int y[5][5];

2/26/01 1:07 PM 10

pictures.

a[0] -45

a[1] 6

a[2] 0

a[3] 72

a[4] 43

1-dimensional array declaration:
int a[5]={-45,6,0,72,43};

2-dimensional array declaration:
int b[3][3]=
{-45,6,0,72,43,1,4,19,-12};

-45 6 0

 72 43 1

 4 19 -12

b[0][0] = -45
b[0][1] = 6
b[0][2] = 0

b[1][0] = 72
b[1][1] = 43
b[1][2] = 1

b[2][0] = 4
b[2][1] = 19
b[2][2] = -12

2/26/01 1:07 PM 11

printing contents.
#include <stdio.h>

int main(void) {

int b[3][3]= {-45,6,0,72,43,1,4,19,-12};

int i, j;

for (i=0; i<3; i++) {

for (j=0; j<3; j++) {

 printf(“b[%d][%d] = %d\n”, i, j, b[i][j]);

 } /* end for j */

} /* end for i */

} /* end of main() */

2/26/01 1:07 PM 12

reading.

• material covered today:
– DD: 4.10, 6.1-6.4, 6.9

• global variables are not treated as a
separate topic in the textbook. we’ll talk
more about them when we discuss scope.

