
3/12/2001 1:59 PM 1

MC140: lecture #18
today’s topic:

scope
functions, pointers, arguments

type casting

3/12/2001 1:59 PM 2

scope.

• refers to the portion of the program
that knows about a variable

• DD defines four types:
(1) file scope
(2) function scope
(3) function prototype scope
(4) block scope (we won’t cover this)

3/12/2001 1:59 PM 3

scope:
file scope.

• also called global variables
• any variables that are declared outside any function

(including main)
• these variables are allocated when the program executes

and any functions inside the same file know about them
#include <stdio.h>
int board[3][3];
int main(void) {
 a();
} /* end of main() */
void a (int i) {

int x = 35;
return(i + x);

} /* end of a() */

board is a
global
variable

3/12/2001 1:59 PM 4

scope:
function scope.

• also called local variables
• any variables that are declared in the header of a

function
• any variables that are declared within the body of the

function
• these variables are essentially discarded after the

function exits -- they only exist in memory during
execution of the function

void a (int i) {
int x = 35;
return(i + x);

} /* end of a() */

i and x are
local
variables

3/12/2001 1:59 PM 5

scope:
static.

• the static keyword can be used when
declaring a variable inside a function

• the variable is a local variable,
however, its value is retained even
after the function exits

• example: void b (void) {
static int x = 50;
printf(“in b, x=%d\n”,x);
++x;
printf(“in b, x=%d\n”,x);

} /* end of b() */
3/12/2001 1:59 PM 6

scope:
example.
#include <stdio.h>

void a(void); /* function prototype */

void b(void); /* function prototype */

void c(void); /* function prototype */
int x = 1; /* global variable */

int main(void) {

int x = 5; /* local variable */

printf(“in main, x = %d\n”,x);

a();

b();

c();

a();
b();

c();

printf(“in main, x = %d\n”,x);

return(0);

} /* end of main() */

void a (void) {

int x = 25;

printf(“in a, x=%d\n”,x);

++x;
printf(“in a, x=%d\n”,x);

} /* end of a() */

void b (void) {

static int x = 50;

printf(“in b, x=%d\n”,x);

++x;

printf(“in b, x=%d\n”,x);

} /* end of b() */

void c (void) {

printf(“in c, x=%d\n”,x);

x *= 10;

printf(“in c, x=%d\n”,x);

} /* end of c() */

3/12/2001 1:59 PM 7

scope:
example,
output.

in main, x = 5
in a, x = 25
in a, x = 26
in b, x = 50
in b, x = 51
in c, x = 1
in c, x = 10
in a, x = 25
in a, x = 26
in b, x = 51
in b, x = 52
in c, x = 10
in c, x = 100
in main, x = 5

3/12/2001 1:59 PM 8

functions, pointers, arguments.
• function arguments are the variables between the

parentheses in a function header
• the value of the argument is passed to the

function, for use inside the function
• example: #include <stdio.h>

void a (int i);

int main(void) {
 int x = 25;
 printf(“in main, x = %d\n”, x);
 a (x);
 printf(“in main, x = %d\n”, x);
} /* end of main() */

void a (int i) {
 printf(“in a, i = %d\n”, i);
} /* end of a() */

in main, x = 25
in a, i = 25
in main, x = 25

output:

3/12/2001 1:59 PM 9

• this is known as “call by value”
• a copy of the argument’s value is made and passed

to the function
• so if the value of the argument changes inside the

function, this value will not be retained after the
function exits

• example:

functions, pointers, arguments, 2.

#include <stdio.h>
void a (int i);

int main(void) {
 int x = 25;
 printf(“in main, x = %d\n”, x);
 a (x);
 printf(“in main, x = %d\n”, x);
} /* end of main() */

void a (int i) {
 i++;
 printf(“in a, i = %d\n”, i);
} /* end of a() */

in main, x = 25
in a, i = 26
in main, x = 25

output:

3/12/2001 1:59 PM 10

• in C, you can simulate what is known as “call by
reference” by passing a pointer to the value instead

• this way, a copy of the argument’s location is made
and passed to the function

• so changes to the value the location points to will be
retained after the function exits

• example:

functions, pointers, arguments, 3.

#include <stdio.h>
void a (int *i);

int main(void) {
 int x = 25;
 printf(“in main, x = %d\n”, x);
 a (&x);
 printf(“in main, x = %d\n”, x);
} /* end of main() */

void a (int *i) {
 *i++;
 printf(“in a, i = %d\n”, *i);
} /* end of a() */

in main, x = 25
in a, i = 26
in main, x = 26

output:

3/12/2001 1:59 PM 11

type casting.
• not only can you pass an address to a function, you can

also pass a variable of another data type from what the
function is expecting

• the behavior may be unpredictable, or what you want
• some conversions are convenient:

char ? int
float ? int

• example:

#include <stdio.h>
void a (char i);

int main(void) {
 int x = 65;
 printf(“in main, x = %d\n”, x);
 a ((char)x);
 printf(“in main, x = %d\n”, x);
} /* end of main() */

void a (char i) {
printf (“in a, i = %c\n”, i);
} /* end of a() */

in main, x = 65
in a, i = A
in main, x = 65

output:

3/12/2001 1:59 PM 12

reading.

• material covered today:
– DD: 5.8, 5.12, pp 73-74

• EXAM #2 will be on MON 19 MARCH
• EXAM #3 will be on WED 11 APRIL
• OFFICE HOURS:

– no office hours today
– regular times on Wednesday 14th
– additional hours on Friday 16th: 3-5pm

