MC140: lecture #2

- today's topics:
 - computer basics
 - writing your first program
 - installing LCC
 - creating your program
 - compiling and running your program
 - submitting your program electronically

2/5/01 12:04

computer basics, 1: some drawing instructions.

- 1. start at bottom of page
- 2. go straight up for 2cm
- 3. turn right 45 degrees
- 4. go straight for 1.4cm
- 5. turn right 90 degrees
- 6. go straight for 1.4cm
- 7. turn right 45 degrees
- 8. go straight for 2cm
- 9. turn right 90 degrees
- 10. go straight for 2cm

2/5/01 12:04

2

computer basics, 2: commands.

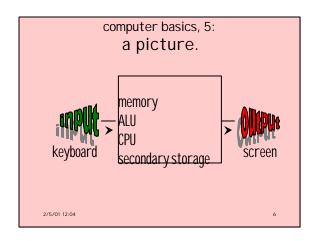
- computer follows commands commands = series of instructions
- you will learn how to *command* a computer command = program = write instructions
- · you understand the commands
- does the computer?
- a question of cognition...
 - ⇒ Artificial Intelligence (AI)

2/5/01 12:04

3

computer basics, 3: components.

- computer = hardware + software
- a computer is organized into logical units:
 - (1) input
 - (2) output
 - (3) memory
 - (4) arithmetic and logic (ALU)
 - (5) central processing (CPU)
 - (6) secondary storage


2/5/01 12:04

computer basics, 4: examples of logical units.

- input
- keyboard, mouse, joystick
- output
 - screen, printer
- memory
 - RAM (random access memory)
- · secondary storage
 - hard disk, CDROM, zip disk

2/5/01 12:04

12:04

computer basics, 6: instructions.

- set of instructions = *program*
- types of instructions:
 - machine language
 - assembly language
 - high-level language (e.g., C)
- program is *compiled* into machine language and then executed
- executing program is called a job or task

2/5/01 12:04

computer basics, 7: machine language.

- · lowest level
- numeric
- · computer is comprised of zillions of switches or relays
 - switches = ON or OFF
 - relays = OPEN or CLOSED
- hardware position is abstracted into software as 1's and 0's
- 1's and 0's mean base 2 = binary 2/5/01 12:04

computer basics, 8: assembly language.

- medium level, but still pretty low
- "English" words and abbreviations
- examples:
 - LOAD
 - ADD
 - SHIFT
 - STORE

2/5/01 12:04

2/5/01 12:04

computer basics, 9: high-level languages.

- examples: C, BASIC, FORTRAN, Pascal, C++, Java, LISP, Scheme
- even more "English"-like
- high-level languages are compiled into machine language

computer basics, 10: languages example.

- machine language
 - +1300042774
 - +1400593419
 - +1200274027
- assembly language: LOAD BASEPAY ADD OVERPAY STORE GROSSPAY
- high-level language:

grossPay = basePay + overTimePay;

2/5/01 12:04

computer basics, 11:

C.

- a program in C consists of modules or *functions*
- there is always a function called *main*
- · there also may be:
 - functions from standard C libraries
 - user-defined functions

writing your first program.

- learning to program is a bit like learning to talk
- first attempts are purely mechanical
- · just follow instructions
- gradually you begin to understand what you are doing

2/5/01 12:04

1 12:04

writing your first program, 2: hello world.

- typical first program in any language:
- write a program that prints "hello world" on the screen
- output only (no input)

```
• in C:
   #include <stdio.h>
   int main( void ) {
       printf( "hello world\n" );
       return( 0 );
   } /* end of main() */
```

installing LCC.

- go to class home page: http://www.cs.bc.edu/~sklar/mc140
- follow link to syllabus
- follow link to using LCC
- download two files:

LCC-Win32

LCC-Win32 users manual and technical documentation

follow installation instructions on web page...

2/5/01 12:04

creating your program.

(detailed instructions on web page)

- create a folder: c:\mc140
- start LCC
- create a new project
- · create your source code

2/5/01 12:04

16

creating your program, 2.

```
• type the following text in the editor (wedit):
   #include <stdio.h>
   int main( void ) {
       printf( "hello world\n" );
       return( 0 );
   } /* end of main() */
```

- copy every character EXACTLY
- punctuation counts!
- number of blanks don't matter
- C is case-sensitive!

2/5/01 12:04

17

compiling and running your program.

- · save the file
 - a.k.a. source code
 - it is named <something>.c
 - your homework <u>must</u> be named:<your-bc-user-name>-ass1.ce.g. sklarel-ass1.c
- compile your program: press F9
- run your program: press Ctrl-F5

2/5/01 12:04

12:04 18

submitting your program

- electronically.

 copy your source code file to my professor's folder in the OCF
- in the OCF:
 - on a PC: Start Programs Professor's Folders
 - on a MAC: (apple menu) Professor's Folders
- not in the OCF:
 - Start Find Computer, federation, ocf_prof
- cut and paste your .c file into the MC140.01 folder inside my folder
- bring a hardcopy to class

2/5/01 12:04