MC140: lecture #23

today's topic:
assignment #7 hints:

passing 2-dimensional arrays to functions
labelling printed output

searching

lecture #23, pl

passing 2-dimensional arrays
to functions.

* When you pass one-dimensional arrays as function
arguments, you don"t need to specify the size of
the array, either in the function prototype or in
the function header itself.

* example:

#include <stdio.h> void printDice(int dice[]) {
int i;
for (i=0; i<5; i++) {
printf("%d ,dice[i]);
int main(void) { } /* end for i */
int dice[5] = { 6, 3, 4, 5, 2 }; printf("\n");
printDice(dice); } 7/* end of printDice() */

return(0);
} /7* end of main() */ \—j

void printDice(int dice[]);

lecture #23, p2

passing 2-dimensional arrays
to functions, 2.

* However, when passing two-dimensional arrays as
function arguments, you must specify the
dimensions both in the function prototype and in
the function header.

passing 2-dimensional arrays
to functions, 3.

« In the book, they leave the first (leftmost)
dimension unspecified and specify the remaining
dimension(s).

* example:
#include <stdio.h> void printBoard(int board[3]1[3]) {
int i, j:
void printBoard(int board[3][3]); for (1=0; i<3; i++) {
for (j=0; j<3; j++) {
int main(void) { printf("%d ",board[i]Li]);
int board[3][3] = } /* end for j */
{1,2,3,4,5,6,7,8,9 }; printf("\n");
printBoard(board); } /* end for i */
return(0); printf("\n");
} /7* end of main() */ } /* end of printBoard() */

* example:
#include <stdio.h> void printBoard(int board[]1[3]) {
int i, j:
void printBoard(int board[]1[3]); for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
int main(void) { printf("%d *,board[i]1[i]);
int board[3][3] = } /* end for j */
{1,2,3,4,5,6,7,8,9 }; printf("\n");
printBoard(board); } /* end for i */
return(0); printf("\n");
} /* end of main() */ } /* end of printBoard() */

lecture #23, p3

¢ both methods work.

lecture #23, p4

labeling rows and columns
when printing a grid.

* Suppose you wanted to print out your tic-tac-toe board,

labelling its rows and columns as follows:
lalblcl

djpi112131

elalstel

———temete ettt

fl7zi819l1

e The numbers (1..9) are the contents of the board[][]

variable. The letters (a..c,d..f) are column and row labels,
respectively. All the other characters -- spaces, vertical
bars (]), dashes (-) and plusses (+) -- are characters that
you print to make the board look nifty.

lecture #23, p5

labeling rows and columns
when printing a grid, 2.

* So to print the first line:
printf(™ Ja]lb | c |\);

* And to print the second line:
pPrintf("--—+-——+-——+——|\n");

* To print the third line, you'll intersperse the "nifty"
characters with the board elements:

printf(" d | %d | %d] %d |\n",board[0][0],board[0][1].board[0][2]);

e The fourth line is just a repeat of the second line.

* You can continue in this way to print out the whole
board, nifty style.

« If you do this, you'll notice some patterns and
perhaps be able to figure out how to write the code
more COHCiSB|y.,,usmg nested for loops, as in the printBoard(), p3.

lecture #23, p6

labeling rows and columns
when printing a grid, 3.

* You might even take advantage of the ASCII
table. Suppose instead of printing

printf(™ Ja|b|]c [\n");

« you had a character variable called cotunn_taber which
you initialized to "a* and then incremented it
after you'd printed the letter "a-:

char column_label = "a";

int j;

printf(" ");

for (j = 0; j<3; j++) {
printf(" %c |",column_label);
column_label++;

} 7* end for j */

* You could do the same thing with a row_label
variable.

lecture #23, p7

searching.

» often, when you have data stored in
an array, you need to locate an
element within that array.

« this is called searching.

« typically, you search for a “key” value
(simply the value you are looking for)
and return its “index” (the location of
the value in the array)

lecture #23, p8

searching, 2.

» as with sorting, there are many
searching algorithms.

e we'll study two:
- linear search
- binary search

lecture #23, p9

linear search.

« linear search simply looks through all
the elements in the array, one at a
time, and stops when it finds the key
value.

e this is inefficient, but if the array
you are searching is not sorted, then
it may be the only practical method.

» a simple example follows on next page

lecture #23, p10

linear search, 2.

#include <stdio-h>
int linearSearch(int dice[], int size, int key);

int main(void) {
int dice[5] = { 3,4,6,5,2,1 };
int k = linearSearch(dice,5,1);
} /7* end of mainQ */

/* this function returns the index of “key” in the “dice” array.
it returns -1 if “key” is not found in the “dice” array. */
int linearSearch(int dice[], int size, int key) {
int i;
for (i=0; i<size; i++) {
if (dice[i] == key) {
return(|);
} /* end if */
3} 7* end for i */
return(-1);
} 7* end linearSearchQ */

lecture #23, pl1

reading.

- DD 6.8, 6.9
e Assignment #7 is due MON 2 APRIL
* EXAM #3 will be on WED 11 APRIL

lecture #23, p12

