MC140: lecture #24
today's topic:
searching:
linear search
binary search

lecture #24, pl

searching.

« last class, we talked about searching
unsorted arrays using a linear search
e today we'll talk about searching
sorted arrays
< we'll discuss two techniques for
searching sorted arrays:
- modified linear search
- binary search

lecture #24, p2

linear search.

« first, here's the basic linear search
from last time

« it works on unsorted arrays

« it also works on sorted arrays, but is
less efficient on sorted arrays than
the modified linear search that
follows -- when the key being
searched for is not in the array being
searched

lecture #24, p3

basic linear search.

#include <stdio.h>
int linearSearch(int dice[], int size, int key);

int main(void) {
int dice[5] = { 3,4,6,5,2,1 };
int k = linearSearch(dice,6,2)
/* in this case, k will be 4, since 2 is stored in the 4th location
in the dice array */
} /7* end of mainQ */

/* this function returns the index of “key” in the “dice” array.
it returns -1 if “key” is not found in the “dice” array. */
int linearSearch(int dice[], int size, int key) {
int i;
for (i=0; i<size; i++) {
If (dice[i] == key) {
return(i);
3} 7% end if */
} /7* end for i */
return(-1);
} /* end linearSearch() */ lecture #24, p4

#include <stdio.h> mOdlfled

int linearSearch2(int dice[], int size, int key); I-
Inear
int main(void) {

int dice[5] = { 1.2,3.4,5.6 };
int k = linearSearch2(dice,6,2); SearCh .
} 7* end of mainQ */

/* this function returns the index of “key” in the “dice” array.
it returns -1 if “key” is not found in the “dice” array.
it assumes the dice array is sorted in ascending order. */
int linearSearch2(int dice[], int size, int key) {

int i =0;
while ((i < size) & (key > dice[i])) {
i+

} /7* end while */

if (key == dice[i]) {
return(i);

} 7* end if */

else {
return(-1);

} /7* end else */

} 7* end linearSearchQ */
lecture #24, p5

binary search.

 binary search is much more efficient
than linear search, on a sorted array

« it takes the strategy of continually
dividing the search space into two
halves, hence the name “binary”

e remember, binary search ONLY works
on sorted arrays

lecture #24, p6

binary search, 2.

e here’s how binary search works

» say you are searching something very
large, like the phone book

« if you are looking for one name (e.g.,
“Gilligan”), it is extremely slow and
inefficient to start with the A's and
look at each name one at a time,
stopping only when you find “Gilligan”

 but this is what linear search does

lecture #24, p7

binary search, 3.

binary search acts much like you'd act if you were
looking up “Gilligan” in the phone book

you'd open the book somewhere in the middle, then
determine if “Gilligan” appears before or after the
page you have opened to

if “Gilligan” appears after the page you've selected,
then you'd open the book to a later page

if “Gilligan” appears before the page you've selected,
then you'd open the book to an earlier page

you'd repeat this process until you found the entry
you are looking for

lecture #24, p8

binary search, 4.

/* this function returns the index of “key” in the “dice” array.
it returns -1 if “key” is not found in the “dice” array.
it assumes the dice array is sorted in ascending order. */

int binarySearch(int dice[], int size, int key) {

int lo = 0, hi = size-1, mid;
while (o <= hi) {
mid = (o + hi) / 2;
if (key == dice[mid]) {
return(mid);
} /* end if */
else if (key < dice[mid]) {
hi = mid - 1;
} /* end else if */
else /* key > dice[mid] */
1o = mid + 1;
} /7* end else */
} /7* end while */
return(-1);
} /* end of binarySearch() */

lecture #24, p9

binary search:
sample run.

« suppose main() looks like this:

int main(void)

int dice[5] = { 1,2,3,4,5,6 };

int k = linearSearch2(dice,6,2);
} 7* end of mainQ */

« inside binarySearch(), it goes like this:

o= G
lo hi mid dice[mid] key action
0 5 (0+5)/2=2 3 2 hi=mid-1; loop again
0 1 (0+1)/2=0 1 2 lo=mid+1; loop again
1 1 A+1)/2=1 2 2 return 1

lecture #24, p10

binary search:
another sample run.

« what happens if the key is not in the array?

* suppose the call is:
k = binarySearch(dice,6,7);

« inside binarySearch(), it goes like this:

dice 012345 size K

ey
=[] g

lo hi mid dice[mid] key action
0 5 (0+5)/2=2 3 7 lo=mid+1; loop again
3 5 (83+5)/2=4 5 7 lo=mid+1; loop again
5 5 (5+5)/2=5 6 7 lo=mid+1; loop again
6 5 exit loop, since 6>5,

return -1

lecture #24, p11

reading.

DD 6.9

Wed 4th: Prof Yanco, recursion

Fri 6th: Prof Muller, recursion

Mon 9th: I'm back! Exam review

EXAM #3 will be on WED 11 APRIL
assignment #8 will come after the exam

for the exam, review the 4 sorting
algorithms we've been discussing, and
the 3 searching algorithms here!

lecture #24, p12

