
1

2/5/01 12:08 1

MC140: lecture #3
today’s topic:

dissecting your first program
• components
• C preprocessor
• comments
• functions
• statements
• exercise
• reading

2/5/01 12:08 2

dissecting your first program.

#include <stdio.h>

int main (void) {

printf(“hello world\n”);

return(0);

} /* end of main() */

preprocessor directive

comment

begin function

end function

function name

function type

function arguments

function body

2/5/01 12:08 3

components of the program.

• preprocessor directive
• comments
• function

– type
– name
– arguments
– body

2/5/01 12:08 4

C preprocessor.
• is a program that runs before the compiler

• preprocessor directives:
lines starting with “#”

• examples:
– #include
– #define

C preprocessor compiler linker

compile
edit run

(execute)

2/5/01 12:08 5

C preprocessor, 2:
#include

• #include <filename>
• copies contents of specified header file

into source code file prior to compiling
• header filename ends in “.h”
• filename syntax:

– surrounded by < and > means standard C
header file

– surrounded by “ and ” means programmer-
defined header file

2/5/01 12:08 6

C preprocessor, 3:
#include <stdio.h>

• definitions from the standard input and
output library

• functions for:
– writing output to the screen
– reading input from the keyboard

2

2/5/01 12:08 7

comments.
• begin with /*
• end with */
• make code more readable
• helps graders
• basic guidelines:

– at beginning of program
– at end of program (})

2/5/01 12:08 8

comments, 2:
at beginning of program.

/* Elizabeth Sklar
 MC140.01, Spring 2001
 Assignment #1
 22 January 2001

 This program prints hello to the world.
*/
#include <stdio.h>
int main(void) {
...

2/5/01 12:08 9

comments, 3:
at end of program.

#include <stdio.h>
int main(void) {
......

} /* end of main() */

2/5/01 12:08 10

functions.

int main (void) {

printf(“hello world\n”);

return(0);

}

begin function

end function

function name

function type

function arguments

function body

• function is enclosed in { }
• stuff between { } is called function body

2/5/01 12:08 11

functions, 2:
data type.

int main (void) {
• data type: int = integer
• numeric data types in C:

– integers: int
– real numbers: float, double

• function returns a value of specified type
return(0);

⇒ 0 is an int
2/5/01 12:08 12

functions, 3:
naming.

• the main function is always called main
• naming rules in C:

– names may contain letters and/or numbers
– names may also contain “_”
– length between 1 and 245 (max for LCC)
– cannot use C keywords

• keyword = name defined as part of C
language

3

2/5/01 12:08 13

functions, 4:
arguments.

• in this case: void
• void means empty
• so in this case, no arguments!

• we’ll do arguments later in the term

2/5/01 12:08 14

functions, 5:
body.

• everything between { and }
• in this case:

{
printf(“hello world\n”);
return(0);

}

• body = series of statements
• statements end with ;

2/5/01 12:08 15

statements, 1:
printf function.

• a first statement: printf
• output statement meaning:

“print formatted data”
• stdio library function
printf(“hello world\n”);
• \n = new line character

2/5/01 12:08 16

statements, 2:
escape sequence.

• start with \
• examples:

\n = new line
\t = tab
\a = alert (ring the bell)
\\ = print a backslash (\)

\” = print a double quote (“)

2/5/01 12:08 17

statements, 3:
exercise.

• what happens with these statements:
printf(“hello world\n”);
printf(“hello world”);
printf(“hello\nworld\n”);
printf(“hello\tworld\n”);

2/5/01 12:08 18

statements, 4:
scanf function.

• a second statement: scanf
• input statement meaning:

“read formatted data”
• stdio library function

scanf(“%d”,&x);
• “%d” = input is an integer
• &x = store input in memory location

 named x

4

2/5/01 12:08 19

storage.

• what does
“memory location named x”

mean?
• the computer stores data so it can be

used later
• stores = remembers

2/5/01 12:08 20

storage, 2:
variables.

• think of the computer’s memory as a
bunch of boxes

• inside each box, there is a number
• you can give each box a name
⇒ defining a variable

int x;
x

your program: computer’s memory:

2/5/01 12:08 21

storage, 3:
details on variables.

• variables have
– type
– name
– value

• first data type:
– int = integer
⇒ whole numbers, including 0 and negative numbers

x
362

type = integer
name = x

value = 362

example:

2/5/01 12:08 22

storage, 4:
reading a value.

if code contains:
int x;
printf(“please enter a number: “);
scanf(“%d”,&x);

and run looks like this:
please enter a number: 97

then memory will look like this:
x
97

2/5/01 12:08 23

reading.

• material covered today:
– DD: ch 2.1 - 2.2

