NQC Programmer's Guide

Version 2.2r1, by Dave Baum

Contents

1

2

INEFOTUCTION......c e b et resnennenne s 1
The NQC LANQAUGE.......ceeeeeiieeieeie st see s ee e ee st e s e sse e seensesseesneeseeneesneeneas 2
21 LEXICal RUIES......coiieeieeeee e 2
211 COMMENTS ...t r e n e nneenns 2
2.1.2 WHITESPDACE. ...t e e nreeenne e 3
213 NUMENTCal CONSLANES.......coueeieiisie e 3
214 Identifiers and KeYWOrdS...........covevuiieeiiice e 3
2.2 Program SHUCLUME.........cciiieieerieeee ettt nne e 4
221 TASKS ..ttt bbbttt ettt renre s 4
222 FUNCLIONS......coeie e 5
2.2.3 SUDIOULINES.......cviteieiet e 8
224 VaraDIES ... 9
2.25 E (= Y TR 11
2.3 SHAEMENES.....oiiiiiieiic e 11
231 Variable DECArationccocoierereeeeiee s 12
2.3.2 ASSIGNMENL. ...t e e b e ae b e e e aeenneas 12
233 CONEIOl SEIUCIUIES ...ttt 13
234 Access Control and EVENLS ..o 15
235 Other SEBEEMENLS........ceeeieierieeieri e 17
24 Expressions and Conditions..........ccccceeeereeiesiesiecie e eee e 18
24.1 (0= [0 SRR 18
24.2 CONAITIONS. ...t 20
P 0= (= o] (01015 o TSP 21

251 FHNCIUAE. ...t e e e et e e e e e e e e e aaeens 21

252 FHAEEINE. ... 21
253 Conditional CompPilation..........cccvevveierieie e 21
254 Program INItialiZaliONcooeiiiiieiece e e 22
255 RESEIVING SIOTAJEcceeeeeeeee e 22
NQC APttt et b e s ae e e b e e s se e e sbe e sareebeeanneenneenareen 24
.l SENISONS. ..ttt e e n e r e n e e 24
311 Types and Modes RCX, CyberMasterccccveieecieeiieiiee e 24
312 SENSOF INFOIMELTON. ...t 27
3.1.3 Scout Light SENSOr SCOUL.........cceeiuieeerieeieseesieeie e ste e 28
3.2 OULPULS. ...ttt r e b b e e e n e e re e r e n e e 29
321 Prmitive CallS.......cooieeiecece s 29
322 ConVENIENCE CallS.........ooiiiiiieeececee e 31
3.23 Global Control RCX2, SCOULccceirrereeerierieisesieseeesie e 32
33 SOUND ..t 33
R I D R]E=s - VA =12 G 34
35 COMMUNICAION.....ctiiiiiieieeieei ettt nne s 36
351 MESSAES RCX, SCOUL......ccviiiiiiieesiee et siee et nneas 36
3.5.2 SEEI RCX 2.ttt st nnens 37
353 W LL SCOUL.....coeiietiieie ettt ettt st sbe e st e e sbe e s e neas 39
38 THMIEIS .ttt r e 39
3.7 CoUNtErSRCX2, SCOUL........ceieiriieiieiesiie et 40
3.8 ACCeSS CoNtrol RCX2, SCOUL........ccurreeriiriereiriesreseeiesressee s 41
3.9 EVENESRCX2, SCOUL.........eoitiiiiriieiiiee et 42

391 RCXZ2 EVENS RCXZ ... 42

392 SCOUL EVENLS SCOUL........coviiiiiiiieieete e 47
T O DT- = 1 I o /1 o 1 = {3 G 49
311 GENEral FEALUMNESc.eieiieceeeeet e 50
312 RCX SPECITIC FEAIUMNES. ... 51
313 SCOUL SPECITIC FEALUIES.......coiiiiiie ettt e 52
3.14 CyberMaster SPeCifiC FEAIUIES.........cccoviiirieeee e 53

Pageiii

NQC Programmer's Guide

1 Introduction

NQC stands for Not Quite C, and is asimple language for programming several LEGO
MINDSTORMS products. Some of the NQC features depend on which MINDSTORMS
product you are using. This product isreferred to as thetarget for NQC. Presently, NQC
supports four different targets: RCX, CyberMaster, Scout, and RCX2 (an RCX running

2.0 firmware).

The preprocessor and control structures of NQC are very similar to C. NQC isnot a
general purpose language - there are many restrictions that stem from limitations of the

targets.

Logically, NQC is defined as two separate pieces. The NQC langauge describes the
syntax to be used in writing programs. The NQC API describes the system functions,
constants, and macros that can be used by programs. This API is defined in a special file
built in to the compiler. By default, thisfile is always processed before compiling a

program.

This document describes both the NQC language and the NQC API. In short, it provides
the information needed to write NQC programs. Since there are several different
interfaces for NQC, this document does not describe how to use any specific NQC
implementation. Refer to the documentation provided with the NQC tool, such asthe

NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site at
http://www.enteract.com/~dbaum/ngc

Page 1

http://www.enteract.com/~dbaum/nqc

NQC Programmer's Guide

2 The NQC Langauge

This section described the NQC language itself. Thisincludes the lexical rules used by
the compiler, the structure programs, statements, and expressions, and the operation of

the preprocessor.

2.1 Lexical Rules

The lexical rules describe how NQC breaks a source file into individual tokens. This

includes the way comments are written, then handling of whitespace, and valid characters

for identifiers.

2.1.1 Comments

Two forms of comments are supported in NQC. Thefirst form (traditional C comments)
begin with/ * and end with */ . They may span multiple lines, but do not nest:

/* this is a comrent */

/* this is a two

[i ne comment */

/* anot her comrent. ..
/* trying to nest. ..
ending the inner comment. .. */
this text is no longer a comment! */
The second form of comments beginswith// and ends with a newline (sometimes

known as C++ style comments).

/1 a single |ine comrent
Comments are ignored by the compiler. Their only purpose isto alow the programmer

to document the source code.

Page 2

NQC Programmer's Guide

2.1.2 Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs
more readable. Aslong as the tokens are distinguishable, adding or subtracting
whitespace has no effect on the meaning of a program. For example, the following lines
of code both have the same meaning:

X=2;

X = 2
Some of the C++ operators consist of multiple characters. In order to preserve these
tokens whitespace must not be inserted within them. In the example below, thefirst line
uses aright shift operator (">>'), but in the second line the added space causes the ">’

symbols to be interpreted as two separate tokens and thus generate an error.

x =1>> 4 /] set x to 1 right shifted by 4 bits
1>>4; /] error

X

2.1.3 Numerical Constants

Numerical constants may be written in either decimal or hexadecimal form. Decimal
constants consist of one or more decimal digits. Hexadecimal constants start with Ox or
0X followed by one or more hexadecimal digits.

x =10; // set x to 10
0x10; // set x to 16 (10 hex)

X

2.1.4 Identifiers and Keywords

|dentifiers are used for variable, task, and function names. The first character of an
identifier must be an upper or lower case letter or the underscore (*_"). Remaining

characters may be letters, numbers, an underscore.

A number of potential identifiers are reserved for use in the NQC language itself. These
reserved words are call keywords and may not be used as identifiers. A complete list of

keywords appears below:
__event_src __type acquire br eak
__sensor abs asm case

Page 3

NQC Programmer's Guide

cat ch fal se r epeat switch
const for return t ask
conti nue i f sign true
def aul t inline start voi d
do i nt st op whil e
el se noni t or sub

2.2 Program Structure

An NQC program is composed of code blocks and global variables. There are three
distinct types of code blocks: tasks, inline functions, and subroutines. Each type of code

block has its own unique features and restrictions, but they all share acommon structure.

2.2.1 Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly correspondsto an
RCX task. Tasks are defined using thet ask keyword using the following syntax:

task name()

{

/'l the task's code is placed here

}
The name of the task may be any legal identifier. A program must always have at |east

onetask - named "main" - which is started whenever the program isrun. The maximum
number of tasks depends on the target - the RCX supports 10 tasks, CyberMaster
supports 4, and Scout supports 6.

The body of atask consists of alist of statements. Tasks may be started and stopped
using the st art and st op statements (described in the section titled Statements). There
isalso an RCX APl command, St opAl | Tasks, which stops all currently running tasks.

Page 4

NQC Programmer's Guide

2.2.2 Functions

It is often helpful to group a set of statements together into a single function, which can
then be called as needed. NQC supports functions with arguments, but not return values.

Functions are defined using the following syntax:

voi d nanme(argunent _li st)

{
/1 body of the function

}
The keyword voi d isan artifact of NQC's heritage - in C functions are specified with the

type of datathey return. Functionsthat do not return data are specified to returnvoi d.
Returning datais not supported in NQC, thus al functions are declared using the voi d

keyword.

The argument list may be empty, or may contain one or more argument definitions. An
argument is defined by its type followed by its name. Multiple arguments are separated
by commas. All valuesin the RCX are represented as 16 bit signed integers. However
NQC supports four different argument types which correspond to different argument

passing semantics and restrictions:

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int& pass by reference only variables may be used
constint & pass by reference function cannot modify argument

Arguments of typei nt are passed by value from the calling function to the callee. This
usually means that the compiler must allocate atemporary variable to hold the argument.
There are no restrictions on the type of value that may be used. However, since the
function is working with a copy of the actual argument, any changes it makes to the value
will not be seen by the caller. 1n the example below, the function f oo attempts to set the
value of itsargument to 2. Thisis perfectly legal, but sincef oo isworking on a copy of

the original argument, the variable y from main task remains unchanged.

Page 5

NQC Programmer's Guide

voi d foo(int X)

task nain()

{
int y =1, // yis nowequal to 1
foo(y); /Il yis still equal to 1!

}
The second type of argument, const i nt, isalso passed by value, but with the

restriction that only constant values (e.g. numbers) may be used. Thisis rather important
since there are a number of RCX functions that only work with constant arguments.

voi d foo(const int X)

{
Pl aySound(x); [ok
x = 1; [l error - cannot nodify argunent

task nain()

{
foo(2); /1 ok
foo(4*5); [/ ok - expression is still constant
foo(x); /[l error - x is not a constant

}

Thethird type, i nt &, passes arguments by reference rather than by value. Thisallows
the callee to modify the value and have those changes visible in the caller. However,
only variables may be used when calling afunction using i nt & arguments.

voi d foo(int &)

Page 6

NQC Programmer's Guide

task nmain()

{

int'y =1, // yis equal to 1

foo(y); /1 y is nowequal to 2

foo(2); /[l error - only variabl es all owed
}

Thelast type, const i nt &, israther unusual. It isalso passed by reference, but with
the restriction that the calleeis not allowed to modify the value. Because of this
restriction, the compiler is able to pass anything (not just variables) to functions using
thistype of argument. In general thisisthe most efficient way to pass argumentsin
NQC.

There is one important difference between i nt argumentsand const i nt & arguments.
Ani nt argument is passed by value, so in the case of adynamic expression (such asa
sensor reading), the value is read once then saved. With const i nt & arguments, the
expression will be re-read each timeit is used in the function:

voi d foo(int x)

{
if (x==x) [/ this wll always be true
Pl aySound(SQUND_CLI CK) ;

voi d bar(const int &)

if (x==x) // nmay not be true..val ue could change
Pl aySound(SQUND_CLI CK);

task nmain()

f 00(SENSOR 1) ; [/ wll play sound
bar (2); [/ wll play sound

Page 7

NQC Programmer's Guide

bar (SENSOR 1) ; /! may not play sound
}

Functions must be invoked with the correct number (and type) of arguments. The

example below shows several different legal and illegal callsto function f oo:

void foo(int bar, const int baz)

{
// do somet hing here. ..

task nain()

{
int X; /] declare vari able x
foo(l, 2; // ok
foo(x, 2; /Il ok
foo(2, x); // eror - 2nd argunent not constant!
foo(2); /'l error - wong nunmber of argunments!
}

NQC functions are always expanded as inline functions. This meansthat each call to a
function resultsin another copy of the function's code being included in the program.

Unless used judiciously, inline functions can lead to excessive code size.

2.2.3 Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared
between several different callers. This makes subroutines much more space efficient than
inline functions, but due to some limitations in the RCX, subroutines have some
significant restrictions. First of all, subroutines cannot use any arguments. Second, a
subroutine cannot call another subroutine. Last, the maximum number of subroutinesis
limited to 8 for the RCX, 4 for CyberMaster, and 3 for Scout. In addition, if the
subroutine is called from multiple tasks then it cannot have any local variables or perform
calculations that require temporary variables (this restriction is lifted for the Scout and

RCX?2). These significant restrictions make subroutines less desirable than functions,

Page 8

NQC Programmer's Guide

therefore their use should be minimized to those situations where the resultant savings in
code size is absolutely necessary. The syntax for a subroutine appears bel ow:

sub nanme()

{
/1 body of subroutine

}

2.2.4 Variables

All variablesin NQC are of the same type - specifically 16 bit signed integers. Variables
are declared using the i nt keyword followed by a comma separated list of variable
names and terminated by a semicolon ('; '). Optionally, aninitial value for each variable
may be specified using an equals sign ('=") after the variable name. Several examples
appear below:

int x; [/ declare x
int vy,z; /[l declare y and z
int a=1,b; // declare a and b, initialize a to 1
Global variables are declared at the program scope (outside any code block). Once

declared, they may be used within al tasks, functions, and subroutines. Their scope

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within
subroutines. Such variables are only accessible within the code block in which they are
defined. Specificaly, their scope begins with their declaration and ends at the end of
their code block. In the case of local variables, a compound statement (a group of
statements bracketed by { and}) is considered a block:

int x; [// x is global

task nain()

{
int y; // yis local to task main
x =vy; Il ok
{ /] begin conpound statenent

int z; // local z declared

Page 9

NQC Programmer's Guide

y =2z; I/l ok

}
y =z; // error - z no | onger in scope

}
task foo()
{
x = 1; [/l ok
y =2; // error - yis not d oba
}

In many cases NQC must allocate one or more temporary variables for itsown use. In
some cases atemporary variable is used to hold an intermediate value during a
calculation. In other casesit isused to hold avalue asit is passed to afunction. These
temporary variables deplete the pool of variables available to the rest of the program.
NQC attempts to be as efficient as possible with temporary variables (including reusing

them when possible).

The RCX (and other targets) provide a number of storage locations which can be used to
hold variablesin an NQC program. There are two kinds of storage locations - global and
local. When compiling a program, NQC assigns each variable to a specific storage
location. Programmers for the most part can ignore the details of this assignment by

following two basic rules:
« If avariable needs to be in aglobal location, declare it asaglobal variable.

* If avariable does not need to be a global variable, makeit aslocal as possible.
This gives the compiler the most flexibility in assigning an actual storage

location.

The number of global and local locations varies by target

Target Global | Local
RCX 32 0
CyberMaster | 32 0

Page 10

NQC Programmer's Guide

Scout 10 8
RCX2 32 16
2.2.5 Arrays

The RCX2 target supports arrays (the other targets do not have suitable support in

firmware for arrays). Arrays are declared the same way as ordinary variables, but with

the size of the array enclosed in brackets. The size must be a constant.

int my_array[3]; // declare an array with three e enents

The elements of an array are identified by their position within the array (called an

index).

Thefirst element has an index of 0, the second hasindex 1, etc. For example:
my_array[0] = 123; // set first elenent to 123
my_array[1l] = my_array[2]; // copy third into second

Currently there are a number of limitations on how arrays can be used. These limitations

will likely be removed in future versions of NQC:

2.3

» An array cannot be an argument to afunction. Anindividual array element,

however, can be passed to afunction.

* Neither arrays nor their elements can be used with the increment (++) or

decrement (--) operators.

* Only ordinary assignment (=) isallowed for array elements. The math
assignments (i.e. +=) are not allowed.

* Theinitial valuesfor an array's el ements cannot be specified - an explicit

assignment is required within the program itself to set the value of an element.

Statements

The body of a code block (task, function, or subroutine) is composed of statements.

Statements are terminated with a semi-colon (';).

Page 11

NQC Programmer's Guide

2.3.1 Variable Delcaration

Variable declaration, as described in the previous section, is one type of statement. It

declares alocal variable (with optional initiaization) for use within the code block. The

syntax for avariable declaration is:

int variabl es;
where variablesis a comma separated list of names with optional initial values:

name[=expressi on]
Arrays of variables may also be declared (for the RCX2 only):

int array[size];

2.3.2 Assignment
Once declared, variables may be assigned the value of an expression:

variabl e assign_operat or expression;
There are nine different assignment operators. The most basic operator, '=', smply

assigns the value of the expression to the variable. The other operators modify the

variable's value in some other way as shown in the table below

Operator | Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression
/= Divide variable by expression
&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

II= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression

Some examples:

X = 2; /]l set x to 2
y =7, /'l set y to 7
X +=y, [l xis 9, yis still 7

Page 12

NQC Programmer's Guide

2.3.3 Control Structures

The simplest control structure is acompound statement. Thisisalist of statements
enclosed within curly braces ('{ ' and '} *):

{

}
Although this may not seem very significant, it plays acrucial rolein building more

complicated control structures. Many control structures expect a single statement as their
body. By using a compound statement, the same control structure can be used to control

multiple statements.

Thei f statement evaluates a condition. If the condition istrue it executes one statement
(the consequence). An optional second statement (the alternative) is executed if the

condition isfalse. Thetwo syntaxesfor ani f statement is shown below.

i f (condition) consequence
i f (condition) consequence el se alternative
Note that the condition is enclosed in parentheses. Examples are shown below. Note

how a compound statement is used in the last example to allow two statements to be

executed as the consequence of the condition.

if (x==1) y = 2;
if (x==1) vy =3; esey = 4;
if (x==1) {y=1, z =2 1}

The whi | e statement is used to construct a conditional loop. The condition is evaluated,
and if true the body of the loop is executed, then the condition istested again. This
process continues until the condition becomes false (or abr eak statement is executed).
The syntax for awhi | e loop appears below:

whi le (condition) body
It is very common to use a compound statement as the body of aloop:

whi le(x < 10)

{

Page 13

NQC Programmer's Guide

X = X+1;
y = y*2;
}
A variant of the whi | e loop isthe do-whi | e loop. Itssyntax is:

do body while (condition)
The difference between awhi | e loop and ado-whi | e loop isthat the do-whi | e loop

always executes the body at |east once, whereas the whi | e loop may not execute it at all.
Another kind of loop isthe f or loop:

for(stntl ; condition ; stnt2) body
A for loop aways executes stmt1, then it repeatedly checks the condition and while it

remains true executes the body followed by stmt2. The for loop is equivalent to:

stm1;
whi | e(condi ti on)
{
body
stm 2;
}

Ther epeat statement executes aloop a specified number of times:

repeat (expression) body
The expression determines how many times the body will be executed. Notethat it is
only evaluated a single time, then the body is repeated that number of times. Thisis
different from both the whi | e and do-whi | e loops which evaluate their condition each

time through the loop.

A swi t ch statement can be used to execute one of several different blocks of code
depending on the value of an expression. Each block of codeis preceded by one or more
case labels. Each case must be a constant and unique within the switch statement. The
switch statement eval uates the expression then looks for a matching case label. It will
then execute any statements following the matching case until either a break statement or
the end of the switch isreaches. A singledef aul t label may also be used - it will match
any value not already appearing in acase label. Technically, a switch statement has the
following syntax:

Page 14

NQC Programmer's Guide

switch (expression) body
The case and default labels are not statements in themselves - they are labels that precede
statements. Multiple labels can precede the same statement. These labels have the
following syntax

case const ant_expressi on
def aul t
A typical switch statement might look like this:

sw tch(x)
{
case 1L
// do sonmet hing when X is 1
break;
case 2
case 3
// do something else when x is 2 o 3
break;
def aul t :
// do this when x is not 1, 2, or 3
break;
}

NQC also definesthe unt i | macro which provides a convenient aternative to the

whi | e loop. The actual definition of unti | is:

#define until (c) while(!(c))
In other words, unt i | will continue looping until the condition becomestrue. It is most

often used in conjunction with an empty body statement:

until (SENSOR 1 = 1); // wait for sensor to be pressed

2.3.4 Access Control and Events

The Scout and RCX2 support access control and event monitoring. Access control
allows atask to request ownership of one or more resources. In NQC, access control is

provided by theacqui r e statement, which has two forms:

Page 15

NQC Programmer's Guide

acquire (resources) body
acquire (resources) body catch handl er
whereresources is a constant that specified the resources to be acquired and body and

handler are statements. The NQC API defines constants for individual resources which
may be added together to request multiple resources at the same time. The behavior of
the acquire statement is as follows. Ownership of the specified resources will be
requested. If another task of higher priority already owns the resources, then the request
will fail and execution will jump to the handler (if present). Otherwise, the request will
succeed, and the body will begin to be executed. While executing the body, if another
task of equal or higher priority requests any of the owned resources, then the original task
will lose ownership. When ownership islost, execution will jJump to the handler (if
present). Once the body has completed, the resources will be returned back to the system
(so that lower priority tasks may acquire them), and execution will continue with the
statement following the acquire statement. If ahandler is not specified, then in both the
case of afailed request, or a subsequent loss of ownership, control will passto the
statement following the acquire statement. For example, the following code acquires a

resource for 10 seconds, playing a sound if it cannot complete successfully:

acqui re(ACQU RE_OUT_A)

{
Wai t (1000);
}
cat ch
{
Pl aySound(SQUND_UP) ;
}

Event monitoring isimplemented with the noni t or statement, which has a syntax very

similar to acqui r e:

monitor (events) body
monitor (events) body catch handl er
Eventsis a constant that determines which events should be monitored. For the Scout,

events are predefined, so there are constants such as EVENT_1_PRESSED which can be
used to specify events. With RCX2, the meaning of each event is configured by the

Page 16

NQC Programmer's Guide

programmer. There are 16 events (numbers 0 to 15). In order to specify an eventina
monitor statement, the event number must be converted to an event mask using the
EVENT_MASK() macro. The Scout event constants or event masks may be added
together to specify multiple events. Multiple masks should be combined using bitwise
OR.

The monitor statement will execute the body while monitoring the specified events. If
any of the events occur, execution will jump to the handler if present. If ahandler is not
present, then control will continue with the statement following the monitor statement.

The following example waits for 10 seconds while monitoring events 2 and 3 for RCX2:

moni t or (EVENT_MASK(2) | BVENT_MASK(3))

{
Wai t (1000);
}
cat ch
{
Pl aySound(SCUND_UP) ;
}

Note that the acquire and monitor statements are only supported for targets that

implement access control and event monitoring - specifically the Scout and RCX2.

2.3.5 Other Statements

A function (or subroutine) call is a statement of the form:

name(argunents) ;
The argumentslist is a comma separated list of expressions. The number and type of

arguments supplied must match the definition of the function itself.

Tasks may be started or stopped with the following statements:

start task_nane;
stop task_nane;

Page 17

NQC Programmer's Guide

Within loops (such as awhi | e loop) the br eak statement can be used to exit the loop

and the cont i nue statement can be used to skip to the top of the next iteration of the
loop. The break statement can also be used to exit a switch statement.

break;

conti nue;

It is possible to cause afunction to return before it reaches the end of its code using the

r et ur n statement.

return;

Any expression is also alegal statement when terminated by a semicolon. Itisrareto use
such a statement since the value of the expression would then be discarded. The one

notable exception is expressions involving the increment (++) or decrement (- -)

operators.

X ++;

The empty statement (just a bare semicolon) is also alegal statement.

2.4 Expressions and Conditions

In C thereis no distinction between expressions and conditions. However, within NQC
they are two syntactically different entities which are used in different situations.
Expressions can be assigned to variables, used as arguments in a function, or as the count
inarepeat statement. Conditions are used in most of the conditional control structures
(i f,while,etc.). Althoughitis possibleto use an expression where a condition is

expected, a condition cannot be substituted for an expression.

2.4.1 Expressions

Values are the most primitive type of expressions. More complicated expressions are

formed from values using various operators. The NQC language only has two built in

Page 18

NQC Programmer's Guide

kinds of values; numerical constants and variables. The RCX API defines other values

corresponding to various RCX features such as sensors and timers.

Numerical constantsin the RCX are represented as 16 bit signed integers. NQC

internally uses 32 bit signed math for constant expression evaluation, then reduces to 16

bits when generating RCX code. Numeric constants can be written as either decimal (e.g.

123) or hexadecimal (e.g. 0xABC). Presently, thereisvery little range checking on

constants, so using a value larger than expected may have unusual effects.

Values may be combined using operators. Severa of the operators may only be used in

evaluating constant expressions, which means that their operands must either be

constants, or expressions involving nothing but constants. The operators are listed here

in order of precedence (highest to lowest).

Operato | Description Associativity Restriction Example

r

abs() Absolute value n/a abs(x)

sign() | sign of operand na si gn(x)

+t Increment left variablesonly | x++ or ++x
Decrement left varidblesonly | X-- Of --X
Unary minus right - X

~ Bitwise negation (unary) right constant only | ~123

* Multiplication left X *y

/ Division left x|y

% Modulo left 123 %4

+ Addition left X +y
Subtraction left X -y

<< Left shift left constantonly | 123 << 4

>> Right shift |eft constantonly | 123 >> 4

& Bitwise AND left X &y

n Bitwise XOR left constantonly [123 * 4

Page 19

NQC Programmer's Guide

| Bitwise OR left x|y
&& Logica AND left constant only 123 & 4
Il Logical OR left constantonly | 123 || 4

Where needed, parentheses may be used to change the order of evaluation:

2.4.2

X =2+ 3* 4

y

Conditions

/] set x to 14

(2 +3) * 4; /] set y to 20

Conditions are generally formed by comparing two expressions. There are also two

constant conditions-t r ue and f al se - which always evaluate to true or false

respectively. A condition may be negated with the negation operator, or two conditions

combined with the AND and OR operators. The table below summarizes the different

types of conditions.

Condition Meaning

true alwaystrue

fal se awaysfalse

expr trueif expr is not equal to 0

exprl == expr2 trueif exprl equals expr2

exprl !'= expr2 trueif exprlisnot equal to expr2

exprl < expr2 trueif one exprl islessthan expr2

exprl <= expr2 true if exprlislessthan or equal to expr2

exprl > expr2 trueif exprl is greater than expr2

exprl >= expr2 true if exprlis greater than or equal to expr2

! condition logical negation of acondition - true if condition isfalse

condl && cond2 logical AND of two conditions (trueif and only if both conditions are
true)

condl || cond2 logical OR of two conditions (true if and only if at least one of the

Page 20

NQC Programmer's Guide

conditions are true)

2.5 The Preprocessor

The preprocessor implements the following directives: #i ncl ude, #def i ne, #i f def ,
#i f ndef , #i f , #el i f, #el se, #endi f , #undef . Itsimplementation isfairly closeto a
standard C preprocessor, so most things that work in a generic C preprocessor should
have the expected effect in NQC. Significant deviations are listed below.

2.5.1 #include

The #i ncl ude command works as expected, with the caveat that the filename must be
enclosed in double quotes. There is no notion of a system include path, so enclosing a

filename in angle brackets is forbidden.
#include "foo.ngh" // ok

#include <foo.ngh> // error!

2.5.2 #define

The #def i ne command is used for ssmple macro substitution. Redefinition of a macro
isan error (unlikein C whereit isawarning). Macros are normally terminated by the
end of the line, but the newline may be escaped with the backslash ("\ ') to allow multi-

line macros:

#define foo(x) do { bar(x); \
baz(x); } vwhile(false)

The #undef directive may be used to remove a macro’s definition.

2.5.3 Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following

preprocessor directives may be used:

Page 21

NQC Programmer's Guide

#if condi ti on

#i f def synbol
#i f ndef synbol
#el se

#el if condition
#endi f
Conditionsin #i f directives use the same operators and precedenceasin C. The

def i ned() operator is supported.

2.5.4 Program Initialization

The compiler will insert acall to aspecia initialization function, _i ni t , at the start of a
program. Thisdefault function is part of the RCX API and sets all three outputsto full
power in the forward direction (but still turned off). The initialization function can be

disabled usingt he #pragnma noi nit directive:

#pragna noinit // don't do any programinitialization
The default initialization function can be replaced with a different function using the
#pragnma init directive.

#pragna init function // use custominitialization

2.5.5 Reserving Storage

The NQC compiler automatically assigned variables to storage locations. However,
sometimes it is necessary to prevent the compiler from using certain storage locations.

This can be done with the #pr agna r eser ve directive:

#pragna reserve start
#pragna reserve start end
This directive forces the compiler to ignore one or more storage locations during variable

assignment. Start and end must be numbers that refer to valid storage locations. If only a
start is provided, then that single location isreserved. If start and end are both specified,
then the range of locations from start to end (inclusive) are reserved. The most common

use of this directive isto reserve locations 0 and/or 1 when using counters for RCX 2.

Page 22

NQC Programmer's Guide

Thisis because the RCX2 counters are overlapped with storage locations 0 and 1. For
example, if both counters were going to be used:

#pragna reserve 0 1

Page 23

NQC Programmer's Guide

3 NQC AP

The NQC API defines a set of constants, functions, values, and macros that provide
access to various capabilities of the target such as sensors, outputs, timers, and
communication. Some features are only available on certain targets. Where appropriate,
asection'stitle will indicate which targetsit appliesto. The RCX2 isa superset of RCX
features, so if RCX islisted, then the feature works with both the original firmware and
2.0 firmware. If RCX2 islisted, then the feature only appliesto the 2.0 firmware.

The API consists of functions, values, and constants. A function is something that can be
called as astatement. Typicaly istakes some action or configures some parameter.
Values represent some parameter or quantity and can be used in expressions. Constants
are symbolic names for values that have special meanings for the target. Often, a set of
constants will be used in conjunction with afunction. For example, the Pl ay Sound
function takes a single argument which determines which sound is to be played.
Constants, such as SOUND_UP, are defined for each sound.

3.1 Sensors

There are three sensors, which internally are numbered O, 1, and 2. Thisis potentialy
confusing since they are externally labeled as sensors 1, 2, and 3. To help mitigate this
confusion, the sensor names SENSOR_1, SENSOR 2, and SENSCR_3 have been defined.
These sensor names may be used in any function that requires a sensor as an argument.
Furthermore, then names may also be used whenever a program wishes to read the
current value of the sensor:

X = SENSOR 1; // read sensor and store value in x

3.1.1 Types and Modes RCX, CyberMaster

The sensor ports on the RCX are capable of interfacing to a variety of different sensors
(other targets don't support configurable sensor types). It isup to the program to tell the
RCX what kind of sensor is attached to each port. A sensor's type may be configured by

calling Set Sensor Type.. Thereare four sensor types, each corresponding to a specific

Page 24

NQC Programmer's Guide

LEGO sensor. A fifth type (SENSOR_TYPE_NONE) can be used for reading the raw
values of generic passive sensors. In general, a program should configure the type to
match the actual sensor. If asensor port is configured as the wrong type, the RCX may
not be able to read it accurately.

Sensor Type M eaning
SENSOR_TYPE_NONE generic passive sensor
SENSOR_TYPE_TOUCH atouch sensor
SENSOR_TYPE_TEMPERATURE atemperature sensor
SENSOR_TYPE_LIGHT alight sensor
SENSOR_TYPE_ROTATION arotation sensor

Both the RCX and CyberMaster allow a sensor to be configured in different modes. The
sensor mode determines how a sensor's raw value is processed. Some modes only make
sense for certain types of sensors, for example SENSOR_MODE_ROTATI ONis useful only
with rotation sensors. The sensor mode can be set by calling Set Sensor Mode. The
possible modes are shown below. Note that since CyberMaster does not support

temperature or rotation sensors, the last three modes are restricted to the RCX only.

Sensor Mode M eaning

SENSOR_MODE_RAW raw value from 0 to 1023
SENSOR_MODE_BOOL boolean value (O or 1)
SENSOR_MODE_EDGE counts number of boolean transitions
SENSOR_MODE_PULSE counts number of boolean periods
SENSOR_MODE_PERCENT value from 0 to 100
SENSOR_MODE_FAHRENHEIT | degreesF - RCX only
SENSOR_MODE_CELSIUS degrees C - RCX only
SENSOR_MODE_ROTATION rotation (16 ticks per revolution) - RCX only

When using the RCX, it is common to set both the type and mode at the same time. The
SetSensor function makes this process alittle easier by providing a single function to call

and a set of standard type/mode combinations.

Sensor Configuration Type Mode

SENSOR_TOUCH SENSOR_TYPE_TOUCH SENSOR_MODE_BOOL

Page 25

NQC Programmer's Guide

SENSOR_LIGHT

SENSOR_TYPE_LIGHT

SENSOR_MODE_PERCENT

SENSOR_ROTATION

SENSOR_TYPE_ROTATION

SENSOR_MODE_ROTATION

SENSOR_CELSIUS

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_FAHRENHEIT

SENSOR_PULSE

SENSOR_TYPE_TOUCH

SENSOR_MODE_PULSE

SENSOR_EDGE

SENSOR_TYPE_TOUCH

SENSEO_MODE_EDGE

The RCX provides a boolean conversion for all sensors - not just touch sensors. This

boolean conversion is normally based on preset thresholds for the raw value. A "low"

value (less than 460) is aboolean value of 1. A high value (greater than 562) is a boolean

value of 0. This conversion can be modified: a slope value between 0 and 31 may be

added to a sensor's mode when calling Set Sensor Mode. If the sensor's value changes

more than the slope value during a certain time (3ms), then the sensor's bool ean state will

change. This allows the boolean state to reflect rapid changes in the raw value. A rapid

increase will result in a boolean value of 0, arapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),

the boolean conversion will still be carried out.

Set Sensor (sensor, configur ation)

Function - RCX

Set the type and mode of the given sensor to the specified configuration, which must

be a specia constant containing both type and mode information.

Set Sensor (SENSOR_1, SENSOR TOUCH) ;

SetSensor Type(sensor, type)

Function - RCX

Set a sensor's type, which must be one of the predefined sensor type constants.

Set Sensor Type(SENSOR 1, SENSOR TYPE_TCUCH);

Set Sensor M ode(sensor, mode)

Function - RCX, CyberMaster

Set a sensor's mode, which should be one of the predefined sensor mode constants. A

slope parameter for boolean conversion, if desired, may be added to the mode (RCX

only).

Page 26

NQC Programmer's Guide

Set Sensor Mode(SENSOR 1, SENSOR MODE RAW; // raw node
Set Sensor Mode(SENSOR 1, SENSOR MODE RAW + 10); // slope 10

Clear Sensor (sensor) Function - All

Clear the value of a sensor - only affects sensors that are configured to measure a

cumulative quantity such as rotation or a pulse count.

Cl ear Sensor (SENSOR 1) ;

3.1.2 Sensor Information

There are anumber of values that can be inspected for each sensor. For all of these
values the sensor must be specified by its sensor number (0, 1, or 2), and not a sensor
name (e.g. SENSOR _1).

Sensor Value(n) Value- All

Returns the processed sensor reading for sensor n, wherenisO, 1, or 2. Thisisthe

same value that is returned by the sensor names (e.g. SENSOR_1).

x = SensorVal ue(0); // read sensor 1

Sensor Type(n) Value- All

Returns the configured type of sensor n, which must be O, 1, or 2. Only the RCX has

configurable sensors types, other targets will always return the pre-configured type of
the sensor.

X = SensorType(0);
Sensor M ode(n) Value- RCX, CyberMaster
Returns the current sensor mode for sensor n, which must be O, 1, or 2.
X = SensorMode(0) ;
Sensor ValueBool (n) Value- RCX

Returns the boolean value of sensor n, which must be O, 1, or 2. Boolean conversion
is either done based on preset cutoffs, or a slope parameter specified by calling
Set Sensor Mbde.

Page 27

NQC Programmer's Guide

X = Sensor Val ueBool (0);
SensorValueRaw(n) Value- RCX, Scout

Returns the raw value of sensor n, which must be 0, 1, or 2. Raw values may range
from 0 to 1023.

X = SensorVal ueRaw(0) ;

3.1.3 Scout Light Sensor Scout

On the Scout, SENSCOR_3 refers to the built-in light sensor. Reading the light sensor's
value (with SENSOR _3) will return one of three levels: O (dark), 1 (normal), or 2 (bright).
The sensor's raw value can be read with Sensor Val ueRaw SENSOR_3), but bear in
mind that brighter light will result in a lower raw value. The conversion of the sensor's
raw value (between 0 and 1023) to one of the three levels depends on three parameters:
lower limit, upper limit, and hysteresis. The lower limit is the smallest (brightest) raw
value that is still considered normal. Vaues below the lower limit will be considered
bright. The upper limit isthe largest (darkest) raw value that is considered normal.
Values about this limit are considered dark.

Hysteresis can be used to prevent the level from changing when the raw value hovers
near one of the limits. Thisisaccomplished by making it alittle harder to leave the dark
and bright states than it is to enter them. Specifically, the limit for moving from normal
to bright will be alittle lower than the limit for moving from bright back to normal. The
difference between these two limitsis the amount of hysteresis. A symmetrical case

holds for the transition between normal and dark.

SetSensor L ower Limit(value) Function - Scout
Set the light sensor's lower limit. Vaue may be any expression.
Set Sensor LowerLimt (100);
SetSensor Upper Limit(value) Function - Scout
Set the light sensor's upper limit. Vaue may be any expression.

Set Sensor WoperLimt (900);

Page 28

NQC Programmer's Guide

SetSensor Hysteresis (value) Function - Scout
Set the light sensor's hysteresis. Value may be any expression.

Set Sensor LowerLimt (20);
CalibrateSensor () Function - Scout

Reads the current value of the light sensor, then sets the upper and lower limitsto
12.5% above and below the current reading, and sets the hysteresis to 3.12% of the
reading.

Cal ibrateSensor () ;

3.2 Outputs

3.2.1 Primitive Calls

All of the functions dealing with outputs take a set of outputs as their first argument.
This set must be a constant. The names QUT_A, OUT_B, and OUT_C are used to identify
the three outputs. Multiple outputs can be combined by adding individual outputs
together. For example, use OUT_A+OUT_B to specify outputs A and B together. The set
of outputs must always be a compile time constant (it cannot be avariable).

Each output has three different attributes: mode, direction, and power level. The mode
can be set by calling Set Qut put (outputs, mode). The mode parameter should be one of

the following constants:

Output Maode M eaning

OUT_OFF output is off (motor is prevented from turning)
OUT_ON output is on (motor will be powered)
OUT_FLOAT motor can "coast"

The other two attributes, direction and power level, may be set at any time, but only have
an effect when the output ison. The direction is set with the Set Di r ect i on(outputs,

direction) command. The direction parameter should be one of the following constants:

Page 29

NQC Programmer's Guide

Direction Meaning

OUT_FWD Set to forward direction

OUT_REV Set to reverse direction

OUT_TOGGLE Switch direction to the opposite of what it is presently

The power level can range O (lowest) to 7 (highest). The names OUT_LOW OUT_HALF,
and OUT_FULL are defined for use in setting power level. Thelevel is set using the

Set Power (outputs, power) function.

Be default, all three motors are set to full power and the forward direction (but still turned

off) when aprogram starts.

SetOutput(outputs, mode) Function - All

Set the outputs to the specified mode. Outputsis one or more of OUT_A, OUT_B, and
QUT_C. Mode must be OUT_ON, OUT_OFF, or QUT_FLQAT.

Set Qutput (OUT_A + OUT_B, QJT_QN); // turn A and B on
SetDirection(outputs, direction) Function - All

Set the outputs to the specified direction. Outputsis one or more of OUT_A, QUT_B,
and OQUT_C. Direction must be OQUT_FWD, OUT_REV, or OUT_FLI P.

SetDrection(QUT_A OUT_REV); // nake A turn backwards
SetPower (outputs, power) Function - All

Sets the power level of the specified outputs. Power may be an expression, but
should result in avalue between 0 and 7. The constants OUT _LOW OUT_HALF, and
OUT_FULL may also be used.

Set Power (QUT_A, OUT_FWL); // A full power
Set Power (QUT_B, X);

OutputStatus(n) Value- All

Returns the current output setting for motor n. Note that n must be 0, 1, or 2 - not
OUT_A, OUT_B, or OUT_C.

Page 30

NQC Programmer's Guide

X = Qut putStatus(0); // status of OUT_A

3.2.2 Convenience Calls

Since control of outputs is such acommon feature of programs, a number of convenience
functions are provided that make it easier to work with the outputs. It should be noted
that these commands do not provide any new functionality above the Set Qut put and
Set Di r ect i on commands. They are merely convenient ways to make programs more

concise.

On(outputs) Function - All

Turn specified outputs on. Outputsis one or more of OUT_A, OUT_B, and OUT_C
added together.

On(QUT_A + QJT_Q; // turn on outputs A and C
Off(outputs) Function - All

Turn specified outputs off. Outputs is one or more of QUT_A, OUT_B, and QUT_C
added together.

Off (OUT_A); // turn off output A

Float(outputs) Function - All

Make outputs float. Outputsis one or more of OUT_A, QUT_B, and OUT_C added
together.

Float (OUT_A); // float output A

Fwd(outputs) Function - All

Set outputs to forward direction. Outputsis one or more of OUT_A, OUT_B, and
OUT_C added together.

Fwd(OUT_A);

Rev(outputs) Function - All

Page 31

NQC Programmer's Guide

Set outputs to reverse direction. Outputsis one or more of OUT_A, OUT_B, and
OUT_C added together.

Rev(OUT_A);
Toggle(outputs) Function - All

Flip the direction of the outputs. Outputsisone or more of QUT_A, OUT_B, and
OUT_C added together.

Toggl e(QJUT_A) ;
OnFwd(outputs) Function - All

Set outputs to forward direction and turn them on. Outputsis one or more of OUT_A,
OUT_B, and QUT_C added together.

OnFwd (OUT_A) ;
OnRev(outputs) Function - All

Set outputs to reverse direction and turn them on. Outputs is one or more of QUT_A,
OUT_B, and QUT_C added together.

OnRev(OUT_A);
OnFor (outputs, time) Function - All

Turn outputs on for a specified amount of time, then turn them off. Outputsis one or
more of OUT_A, OUT_B, and QUT_C added together. Timeis measuresin 10ms

increments (one second = 100) and may be any expression.

OnFor (OUT_A, X);
3.2.3 Global Control RCX2, Scout

SetGlobal Output(outputs, mode) Function - RCX2, Scout

Disable or re-enable outputs depending on the mode parameter. If mode is OUT_CFF,
then the outputs will be turned off and disabled. While disabled any subsequent calls

to Set Qut put () (including convenience functions such as On()) will beignored.

Page 32

NQC Programmer's Guide

Using amode of OUT_FLOAT will put the outputs in float mode before disabling
them. Outputs can be re-enabled by calling Set A obal Qut put () with amode of
OUT_ON. Note that enabling an output doesn't immediately turn it on - it just allows

future callsto Set Qut put () to take effect.

Set @ obal Qutput (OUT_A, QJT_CFF); [// disable output A
Set @ obal Qutput (OUT_A, QJT_N); [// enable output A

SetGlobal Direction(outputs, direction) Function - RCX2, Scout

Reverses or restores the directions of outputs. The direction parameter should be
OUT_FWD, QUT_REV, or QUT_FLI P. Normal behavior isaglobal direction of
OUT_FWD. When the global direction is QUT_REV, then the actual output direction
will be the opposite of whatever the regular output calls request. Calling

Set d obal Di recti on() withOQUT_FLI P will switch between normal and opposite
behavior.

Set @ obal Direction(QUT_A OUT_REV); // opposite direction
Set @ obal Direction(QUT_A OUT_FWD); // normal direction

SetM axPower (outputs, power) Function - RCX2, Scout

Sets the maximum power level allowed for the outputs. The power level may be a
variable, but should have a value between OQUT LOWand OUT_FULL.

Set MaxPower (OUT_A, QJT_HALF);

GlobalOutputStatus(n) Value - RCX2, Scout

Returns the current global output setting for motor n. Note that n must be O, 1, or 2 -
not OUT_A, OUT_B, or OUT_C.

X = Gl obal Qut putStatus(0); // global status of QJT_A

3.3 Sound

PlaySound(sound) Function - All

Page 33

NQC Programmer's Guide

Plays one of the 6 preset RCX sounds. The sound argument must be a constant. The
following constants are pre-defined for use with Pl ay Sound: SOUND_CLI CK,
SOUND_DOUBLE_BEEP, SOUND_DOWN, SOUND_UP, SOUND_LOW BEEP,
SOUND_FAST_UP.

Pl aySound(SQUND_CLI CK) ;
PlayTone(frequency, duration) Function - All

Plays s single tone of the specified frequency and duration. The frequency isin Hz
and can be avariable for RCX2 and Scout, but has to be constant for RCX and
CyberMaster. The duration isin 100ths of a second and must be a constant.

Pl ayTone(440, 50); // Ray 'A for one hal f second
MuteSound() Function - RCX2, Scout
Stops all sounds and tones from being played.
Mut eSound() ;
UnmuteSound() Function - RCX2, Scout
Restores normal operation of sounds and tones.
Unnmut eSound() ;
Clear Sound() Function - RCX2
Removes any pending sounds from the sound buffer.
Cl ear Sound();
SelectSounds(gr oup) Function - Scout
Selects which group of system sounds should be used. The group must be a constant.

Sel ect Sounds(0) ;

3.4 LCD Display RCX

The RCX has seven different display modes as shown below. The RCX defaults to
DI SPLAY_WATCH.

Page 34

NQC Programmer's Guide

Mode L CD Contents
DISPLAY_WATCH show the system "watch"
DISPLAY_SENSOR 1 show value of sensor 1
DISPLAY_SENSOR 2 show value of sensor 2
DISPLAY_SENSOR_ 3 show value of sensor 3
DISPLAY_OUT_A show setting for output A
DISPLAY_OUT_B show setting for output B
DISPLAY_OUT_C show setting for output C

The RCX2 adds an eighth display mode - DI SPLAY_USER. User display mode
continuously reads a source value and updates the display. It can optionaly display a
decimal point at any position within the number. This alowsthe display to give the
illusion of working with fractions even though all values are stored internally as integers.
For example, the following call will set the user display to show the value 1234 with two
digits appearing after the decimal point, resulting in "12.34" appearing on the LCD.

Set User D splay(1234, 2);
The following short program illustrates the update of the user display:

task nain()

{
Clear Ti mer(0);
Set User D splay(Tiner(0), 0);
until (fal se);

}

Because the user display mode continuously updates the LCD, there are certain
restrictions on the source value. If avariableis used it must be assigned to a global
storage location. The best way to ensure thisis to make the variable aglobal one. There
can also be some strange side effects. For example, if avariable isbeing displayed and
later used as the target of a calculation, it is possible for the display to show some
intermediate results of the calculation:

int x;

task nain()

{

Page 35

NQC Programmer's Guide

Set User D splay(x, 0);
whi le(true)

{
[/ display may briefly show 1!
x =1 + Tinmer(0);

}
SelectDisplay(mode) Function - RCX
Select adisplay mode.
Sel ect Di spl ay(DI SPLAY_SENSOR 1) ; // vi ew sensor 1
SetUser Display(value, precision) Function - RCX2

Set the LCD display to continuously monitor the specified value. Precision specifies
the number of digitsto the right of the decimal point. A precision of zero shows no

decimal point.

Set lserDi splay(Timer(0), 0; // viewtimer O

3.5 Communication

3.5.1 Messages RCX, Scout

The RCX and Scout can send and receive simple messages using IR. A message can
have a value from 0 to 255, but the use of message 0 is discouraged. The most recently
received message is remembered and can be accessed as Message() . If no message has

been received, Message() will return O.

Clear M essage() Function - RCX, Scout

Clear the message buffer. Thisfacilitates detection of the next received message

since the program can then wait for Message() to become non-zero:

Cl ear Message(); // clear out the received message
until (Message() > 0); // wait for next nessage

Page 36

NQC Programmer's Guide

SendM essage(message) Function - RCX, Scout

Send an IR message. Message may be any expression, but the RCX can only send
messages with a value between 0 and 255, so only the lowest 8 bits of the argument
are used.

SendMessage(3); // send nmessage 3
SendMessage(259); // another way to send nessage 3

Set TxPower (power) Function - RCX, Scout

Set the power level for IR transmission. Power should be one of the constants
TX_POWER_LOoOr TX_POAER HI .

3.5.2 Serial RCX2

The RCX2 can transmit seria dataout the IR port. Prior to transmitting any data, the
communication and packet settings must be specified. Then, for each transmission, data
should be placed in the transmit buffer, then send using the SendSer i al () function.

The communication settings are set with Set Ser i al Conm and determine how bits are

sent over IR. Possible values are shown below.

Option Effect

SERIAL_COMM_DEFAULT | default settings

SERIAL_COMM_4800 4800 baud

SERIAL_COMM_DUTY 25 25% duty cycle

SERIAL_COMM_76KHZ 76kHz carrier

The default is to send data at 2400 baud using a 50% duty cycle on a 38kHz carrier. To
specify multiple options (such as 4800 baud with 25% duty cycle), combine the
individual options using bitwise or (SERI AL_COWM 4800 | SERI AL_COWVM DUTY25).

The packet settings are set with Set Ser i al Packet and control how bytes are

assembled into packets. Possible values are shown below.

Page 37

NQC Programmer's Guide

Option Effect

SERIAL_PACKET_DEFAULT no packet format - just data bytes

SERIAL_PACKET_PREAMBLE | send a packet preamble

SERIAL_PACKET_NEGATED follow each byte with its complement

SERIAL_PACKET_CHECKSUM | include a checksum for each packet

SERIAL_PACKET_RCX standard RCX format (peramble,
negated data, and checksum)

Note that negated packets always include a checksum, so the

SERI AL_PACKET_CHECKSUMOoption is only meaningful when

SERI AL_PACKET_NEGATED is not specified. Likewise the preamble, negated, and
checksum settings are implied by SERI AL_PACKET_RCX.

The transmit buffer can hold up to 16 data bytes. These bytes may be set using
Set Ser i al Dat a, then transmitted by calling SendSer i al . For example, the following
code sends two bytes (0x12 and 0x34) out the serial port:

Set Seri al Conm(SERI AL_COW DEFAULT) ;

Set Seri al Packet (SERI AL_PACKET_DEFAULT);
Set Seri al Data(0, 0x12);

Set Seri al Data(1, 0x34);

SendSerial (0, 2);

SetSerial Comm(settings) Function - RCX2
Set the communication settings, which determine how the bits are sent over IR
Set Seri al Comr(SERI AL_COMM DEFAULT) ;
Set Serial Packet(settings) Function - RCX2
Set the packet settings, which control how bytes are assembled into packets.
Set Seri al Packet (SERI AL_PACKET_DEFAULT) ;

SetSerialData(n, value) Function - RCX2

Page 38

NQC Programmer's Guide

Set one byte of datain the transmit buffer. N istheindex of the byte to set (0-15),
and value can be any expression.

Set Serial Data(3, X); // set byte 3 to X

SerialData(n) Value- RCX2

Returns the value of abyte in the transmit buffer (NOT received data). N must be a

constant between 0 and 15.

X = SerialData(7); // read byte #7

SendSerial(start, count) Function - RCX2

Use the contents of the transmit buffer to build a packet and send it out the IR port
(according to the current packet and communication settings). Start and count are
both constants that specify the first byte and the number of bytes within the buffer to
be sent.

SendSerial (0,2); // send first two bytes in buffer

3.5.3 VLL Scout

SendVLL(value) Function - Scout

SendsaVisble Light Link (VLL) command, which can be used to communicate with
the MicroScout or Code Pilot. The specific VLL commands are described in the
Scout SDK.

SendVLL(4); // send VLL command #4

3.6 Timers

All targets provide several independent timers with 100ms resolution (10 ticks per
second). The scout provides 3 such timers while the RCX and CyberMaster provide 4.
The timers wrap around to 0 after 32767 ticks (about 55 minutes). The value of atimer
can beread using Ti ner (n) , where n is aconstant that determines which timer to use (0-
2 for Scout, 0-3 for the others). RCX2 provides the ability to read the same timers with

Page 39

NQC Programmer's Guide

higher resolution by using Fast Ti ner (n) , which returns the timer's value with 10ms

resolution (100 ticks per second).

Clear Timer(n) Function - All
Reset the specified timer to 0.
Clear Ti mer(0);
Timer(n) Value- All
Return the current value of specified timer (in 200ms resolution).
x = Timer (0);
SetTimer (n, value) Function - RCX2
Set atimer to a specific value (which may be any expression).
Set Ti mer (0, x);
FastTimer(n) Value- RCX2
Return the current value of specified timer in 10ms resolution.

x = FastTimer (0);

3.7 Counters RCX2, Scout

Counters are like very simple variables that can be incremented, decremented, and
cleared. The Scout provides two counters (0 and 1), while the RCX2 provides three (0, 1,
and 2). Inthe case of RCX2, these counters are overlapped with global storage locations
0-2, so if they are going to be used as counters, a #pragma reserve should be used to
prevent NQC from using the storage location for aregular variable. For example, to use
counter 1:

#pragna reserve 1
Clear Counter (n) Function - RCX2, Scout
Reset counter nto 0. N must be 0 or 1 for Scout, 0-2 for RCX 2.

Cl ear Counter(1);

Page 40

NQC Programmer's Guide

IncCounter (n) Function - RCX2, Scout
Increment counter nby 1. N must be 0 or 1 for Scout, 0-2 for RCX2
I ncCounter(1);
DecCounter (n) Function - RCX2, Scout
Decrement counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2
DecCounter(1);
Counter(n) Value- RCX, Scout
Return the current value of counter n. N must be 0 or 1 for Scout, 0-3 for RCX2

x = Count er (1);

3.8 Access Control RCX2, Scout

Access control isimplemented primarily by theacqui r e statement. The Set Priority
function can be used to set atask's priority, and the following constants may be used to
specify resourcesin an acqui r e statement. Note that the user defined resources are only
available on the RCX2.

Constant Resour ce

ACQUIRE_OUT_A, outputs
ACQUIRE_OUT_B,
ACQUIRE_OUT_C

ACQUIRE_SOUND sound
ACQUIRE_USER 1, user defined -
ACQUIRE_USER 2, RCX2 only

ACQUIRE_USER 3,
ACQUIRE_USER 4

SetPriority(p) - Function - RCX2, Scout

Page 41

NQC Programmer's Guide

Set atasks priority to p, which muse be a constant. RCX2 supports priorities 0-255,
while Scout supports priorities 0-7. Note that lower numbers are higher priority.

SetPriority(1);

3.9 Events RCX2, Scout

Although the RCX2 and Scout share a common event mechanism, the RCX2 provides 16
completely configurable events while the Scout has 15 predefined events. The only

functions common to both targets are the commands to inspect or force events.

ActiveEvents(task) Value- RCX2, Scout
Return the set of events that have been triggered for a given task.
x = ActiveEvent s(0);
Event(events) Function - RCX2, Scout

Manually triggers the specified events. This can be useful in testing event handling
of the program, or in other cases simulating an event based on other criteria. Note
that the specification of the events themselvesis dightly different between RCX2 and
Scout. RCX2 uses the EVENT_MASK macro to compute an event mask, while Scout
has predefined masks.

Event (EVENT_MASK(3)); // triggering an RCX2 event
Event (EVENT_1 PRESSED); // triggering a Sout event

3.9.1 RCX2 Events RCX2

RCX2 has provides an extremely flexible event system. There are 16 events, each of
which can be mapped to one of severa event sources (the stimulus that can trigger the
event), and an event type (the criteriafor triggering). A number of other parameters may
also be specified depending on the event type. For all of the configuration calls an event

isidentified by its event number - a constant from 0 to 15.

Legal event sources are sensors, timers, counters, or the message buffer. Aneventis

configured by calling Set Event (event, source, type),whereeventisaconstant

Page 42

NQC Programmer's Guide

event number (0-15), source is the event source itself, and type is one of the types shown
below (some combinations of sources and types areillegal).

Event Type Condition Event Source
EVENT_TYPE_PRESSED value becomes on sensors only
EVENT_TYPE_RELEASED value becomes off sensors only
EVENT_TYPE_PULSE value goes from off to on to off sensors only
EVENT_TYPE_EDGE vaue goes from on to off or vice | sensorsonly
versa
EVENT_TYPE_FASTCHANGE value changes rapidly sensors only
EVENT_TYPE_LOW value becomes low any
EVENT_TYPE_NORMAL value becomes normal any
EVENT_TYPE_H GH value becomes high any
EVENT_TYPE_CLI CK value from low to high back to low | any
EVENT_TYPE_DOUBLECLI CK two clicks within a certain time any
EVENT_TYPE_MESSAGE new message received Message() only

Thefirst four event types make use of a sensor's boolean value, thus are most useful with
touch sensors. For example, to set event #2 to be triggered when a touch sensor on port 1
is pressed, the following call could be made:

Set Event (2, SENSOR 1, EVENT_TYPE PRESSED) ;
EVENT_TYPE_FASTCHANGE should be used with sensors that have been configured with
aslope parameter. When the raw value changes faster than the slope parameter an
EVENT_TYPE_FASTCHANGE event will be triggered.

The next three types (EVENT_TYPE_LOW EVENT_TYPE_NORMAL, and

EVENT_TYPE_HI GH) convert an event sources value into one of three ranges (low,

Page 43

NQC Programmer's Guide

normal, or high), and trigger an event when the value moves from one range into another.
The ranges are defined by the lower limit and upper limit for the event. When the source
value islower than the lower limit, the source is considered low. When the source value
is higher than the upper limit, the source is considered high. The source is normal
whenever it is between the limits.

The following example configures event #3 to trigger when the sensor on port 2's value
goesinto the high range. The upper limit is set for 80, and the lower limit is set for 50.
This configuration is typical of how an event can be triggered when a light sensor
detected a bright light.

Set Event (3, SENSOR 2, EVENT _TYPE H @&H);

Set LowerLinmit (3, 50);

Set WoperLinmt (3, 80);
A hysteresis parameter can be used to provide more stable transitions in cases where the
source value may jitter. Hysteresis works by making the transition from low to normal a
little higher than the transition from normal to low. Inasense, it makesit easier to get
into the low range than get out of it. A symmetrical case applies to the transition between
normal and high.

A transition from low to high back to low will trigger aEVENT_TYPE_CLI CK event,
provided that the entire sequence is faster than the click timefor the event. If two
successive clicks occur and the time between clicksis also less than the click time, then
an EVENT_TYPE_DOUBLECLI CK event will be triggered. The system also keeps track of

the total number of clicks for each event.

The last event type, EVENT_TYPE_MESSAGE, isonly valid when Message() isused as
the event source. The event will be triggered whenever a new message arrives (evenif its

value is the same as a previous message).

The monitor statement and some API functions (such as ActiveEvents() or Event()) need
to handle multiple events. Thisis done by converting each event number to an event
mask, and then combining the masks with a bitwise OR. The EVENT_MASK(event)
macro converts an event number to amask. For example, to monitor events 2 and 3, the

following statement could be used:

Page 44

NQC Programmer's Guide

noni t or (EVENT_MASK(2) | EVENT_MASK(3))
SetEvent(event, sour ce, type) Function - RCX2

Configure an event (a number from 0 to 15) to use the specified source and type.
Both event and type must be contants, and source should be the actual source

expression.
Set Event (2, Timer (0), EVENT_TYPE H GH);
Clear Event(event) Value- RCX2

Clear the configuration for the specified event. This preventsit from triggering until

it isre-configured.

ClearEvent(2); // clear event #2

Clear AllEvents() Value- RCX2

Clear the configurations for all events.

Clear Al | Event s();

EventState(event) Value- RCX2

Return the state of agiven event. Statesare 0: Low, 1. Normal, 2: High, 3:
Undefined, 4: Start calibrating, 5: Calibrating in process.
X = Event State(2);

CalibrateEvent(event, lower, upper, hyst) Function - RCX2

Calibrate the event by taking an actual sensor reading and then applying the specified
lower, upper, and hyst ratios to determine actual limits and hysteresisvalue. The
specific formulas for calibration depend on sensor type and are explained in the
LEGO SDK. Calibration is not instantaneous - EventState() can be checked to
determine when the calibration is complete (typically about 50ms).

Cal ibrateEvent (2, 50, 50, 20);
until (EventState(2) '=5; // wait for calibration

SetUpperLimit(event, limit) Function - RCX2

Page 45

NQC Programmer's Guide

Set the upper limit for the event, where event is a constant event number and limit can
be any expression.

Set WperLimt (2, X); // set upper limt for #2 to X
UpperLimit(event) Value- RCX2
Return the current upper limit for the specified event number.
X = UpperLimt(2); // get upper limt for event 2
SetL ower Limit(event, limit) Function - RCX2

Set the lower limit for the event, where event is a constant event number and limit can
be any expression.

Set LowerLimt (2, X); // set lower limt for #2 to X
L ower Limit(event) Value- RCX2
Return the current lower limit for the specified event number.

X = LowerLimt(2); // get lower limt for event 2

SetHyster esis(event, value) Function - RCX2

Set the hysteresis for the event, where event is a constant event number and value can

be any expression.
Set Hysteresis(2, X);
Hyster esis(event) Value- RCX2
Return the current hysteresis for the specified event number.
X = Hysteresi s(2);
SetClick Time(event, value) Function - RCX2

Set the click time for the event, where event is a constant event number and value can
be any expression. Thetimeis specified in increments of 10ms, so one second would
be avalue of 100.

Set AickTinme(2, Xx);

Page 46

NQC Programmer's Guide

Click Time(event) Value- RCX2
Return the current click time for the specified event number.
x = ClickTi me(2);
SetClickCounter (event, value) Function - RCX2

Set the click counter for the event, where event is a constant event number and value

can be any expression.
Set A ickCounter (2, X);
ClickCounter (event) Value- RCX2
Return the current click counter for the specified event number.

X = ClickCounter(2);

3.9.2 Scout Events Scout

The Scout provides 15 events, each of which has a predefined meaning as shown in the
table below.

Event Name Condition
EVENT_1 PRESSED sensor 1 pressed
EVENT_1 RELEASED sensor 1 released

EVENT 2 PRESSED sensor 2 pressed
EVENT 2 _RELEASED sensor 2 released
EVENT_LIGHT HIGH light sensor "high"
EVENT_LIGHT_NORMAL light sensor "normal”
EVENT_LIGHT LOW light sensor "Tow"
EVENT LIGHT _CLICK low to high to low
EVENT_LIGHT_DOUBLECLICK two clicks

Page 47

NQC Programmer's Guide

EVENT_COUNTER_ O counter O over limit
EVENT _COUNTER 1 counter 1 over limit
EVENT_TIMER O timer O over limit
EVENT TIMER 1 timer 1 over limit
EVENT_TIMER 2 timer 2 over limit
EVENT_MESSAGE new message received

Thefirst four events are triggered by touch sensors connected to the two sensor ports.
EVENT_LI GHT_HI GH, EVENT_LI GHT_NORMAL, and EVENT_L| GHT_LOware triggered
by the light sensor's value changing from one range to another. The ranges are defined
by Set Sensor Upper Li nmit, Set Sensor Lower Li mi t, and Set Sensor Hyst eresi s

which were described previously.

EVENT_LI GHT_CLI CKand EVENT_LI| GHT_DOUBLECLI CK are also triggered by the light
sensor. A click isatransition from low to high and back to low within a certain amount

of time, called the click time.

Each counter has a counter limit. When the counter exceeds this limit,
EVENT_COUNTER_0 or EVENT_COUNTER _1 istriggered. Timersaso have alimit, and
they generate EVENT_TI MER_0, EVENT_TI MER 1, and EVENT_TI MER 2.

EVENT_MESSAGE is triggered whenever anew IR message is received.

SetSensor Click Time(value) Function - Scout

Set the click time used to generate events from the light sensor. Vaue should be
specified in increments of 10ms, and may be any expression.

Set Sensor d i ckTi me(x) ;
SetCounter Limit(n, value) Function - Scout
Set the limit for counter n. N must be 0 or 1, and value may be any expression.
Set CounterLimt (0, 100); // set counter O limt to 100

SetTimerLimit(n, value) Function - Scout

Page 48

NQC Programmer's Guide

Set the limit for timer n. N must be O, 1, or 2, and value may be any expression.

SetTinmerLimt (1, 100); // set timer 1 limt to 100

3.10 Data Logging RCX

The RCX contains a datalog which can be used to store readings from sensors, timers,
variables, and the system watch. Before adding data, the datalog first needs to be created
using the Cr eat eDat al og(size) command. The'size' parameter must be a constant and
determines how many data points the datalog can hold.

Creat eDat al og(100); /'l datalog for 100 points
Values can then be added to the datalog using AddToDat al og(value). When the datalog

is uploaded to a computer it will show both the value itself and the source of the value
(timer, variable, etc). The datalog directly supports the following data sources: timers,
sensor values, variables, and the system watch. Other data types (such as a constant or
random number) may also be logged, but in this case NQC will first move the value into
avariable and then log the variable. The valueswill still be captured faithfully in the
datalog, but the sources of the data may be a bit misleading.

AddToDatal og(Ti ner(0));// add timer O to datal og

AddToDatal og(x); // add variable 'x'

AddToDatalog(7); // add 7 - wll look like a variable
The RCX itself cannot read values back out of the datalog. The datalog must be
uploaded to a host computer . The specifics of uploading the datalog depend on the NQC
environment being used. For example, in the command line version of NQC, the
following commands will upload and print the datal og:

ngc -datal og
ngc -datalog full

CreateDatalog(size) Function - RCX

Create adatalog of the specified size (which must be a constant). A size of O clears

the existing datalog without creating a new one.

Creat eDat al og(100); // datalog for 100 points

Page 49

NQC Programmer's Guide

AddToDatalog(value) Function - RCX

Add the value, which may be an expression, to the datalog. If the datalog isfull the
call has no effect.

AddToDat al og(x) ;
UploadDatalog(start, count) Function - RCX

Initiate and upload of count data points beginning at start. Thisis of relatively little
use since the host computer usually initiates the upload.

Upl oadDat al og(0, 100); // wupload entire 100 point log

3.11 General Features

Wait(time) Function - All

Make atask sleep for specified amount of time (in 100ths of a second). Thetime
argument may be an expression or a constant:

Wai t(100); // wait 1 second
Wai t (Random(100)); // wait randomtime up to 1 second

StopAllTasks() Function - All

Stop all currently running tasks. Thiswill halt the program completely, so any code
following this command will be ignored.

StopAl | Tasks(); // stop the program
Random(n) Value- All
Return a random number between 0 and n. N must be a constant.
X = Randon{ 10);
SetRandomSeed(n) Function - RCX2
Seed the random number generator with n. N may be an expression.

Set RandonSeed(x); // seed with value of x

Page 50

NQC Programmer's Guide

SetSlegpTime(minutes) Function - RCX, Cyber M aster

Set the sleep timeout the requested number of minutes (which much be a constant).
Specifying O minutes disables the sleep feature.

Set S eepTine(5); // sleep after 5 minutes
Set S eepTinme(0); // disable sleep tine

SleepNow() Function - RCX, Cyber M aster

Force the device to go to sleep. Only works if the sleep time is non-zero.

SleepNow(); // go to sleep

3.12 RCX Specific Features

Program() Value- RCX
Number of the currently selected program.
x = Program();
SelectProgram(n) Function - RCX2

Select the specified program and start running it. Note that programs are numbered
0-4 (not 1-5 as displayed on the LCD).

Sel ect Program(3);
BatteryL evel() Value- RCX2
Return the battery level in millivolts.
X = BatterylLevel ();
FirmwareVersion() Value- RCX2
Return the firmware version as an integer. For example, version 3.2.6 is 326.

X = Fir nwar eVer si on() ;

Watch() Value- RCX

Page 51

NQC Programmer's Guide

Return the value of the system clock in minutes.
x = Wat ch();
SetWatch(hours, minutes) Function - RCX

Set the system watch to the specified number of hours and minutes. Hours must be a
constant between 0 and 23 inclusive. Minutes must be a constant between 0 and 59

inclusive.

Set Vatch(3, 15); // set watch to 3:15

3.13 Scout Specific Features

SetScoutRules(motion, touch, light, time, fx) Function - Scout

Set the various rules used by the scout in stand-alone mode.

ScoutRules(n) Value - Scout
Return current setting for one of the rules. N should be a constant between 0 and 4.
X = Scout Rules(1); // get setting for rule #1
SetScoutM ode(mode) Function - Scout

Put the scout into stand-alone (0) or power (1) mode. Asaprogramming call it really
only makes sense to put into stand-alone mode since it would aready be in power

mode to run an NQC program.

SetEventFeedback (events) Function - Scout
Set which events should be accompanied by audio feedback.
Set Event Feedback(EVENT_1_PRESSED) ;
EventFeedback() Value - Scout
Return the set of events that have audio feedback.

x = Event Feedback() ;

Page 52

NQC Programmer's Guide

SetLight(mode) Function - Scout
Control the Scout's LED. Mode must be LIGHT_ON or LIGHT_OFF.

Set Li ght (LI GHT_QN); // turn on LED

3.14 CyberMaster Specific Features

This section is woefully incomplete. The basic problemsisthat | don't have a
CyberMaster, so I've never tried to understand these calls. If anyone has a good

description of the functions, please let me know.

CyberMaster provides alternate names for the sensors: SENSOR_L, SENSOR_M and
SENSCOR_R. It also provides alternate names for the outputs: OQUT_L, QUT_R, OUT_X.

Drive(motor 0, motor 1) Function - Cyber Master
OnWait(motors, n time) Function - Cyber Master

OnWaitDifferent(motors, n0O, n1, n2, time) Function - Cyber M aster

Clear TachoCounter (motors) Function - Cyber M aster
TachoCount(n) Value - CyberMaster
TachoSpeed(n) Value - CyberMaster
ExternalM otor Running() Value - CyberMaster
AGC() Value - CyberMaster

Return the current value of the automatic gain control on the RF receiver.

x = AXX() ;

Page 53

