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Abstract- We intr oduce Embodied Evolution (EE) as a
methodology for the automatic design of robotic con-
tr ollers. EE is an evolutionary robotics (ER) tech-
nique that avoids the pitfalls of the simulate-and-transfer
method, allows the speed-upof evaluation time by utiliz-
ing parallelism, and is particularly suited to futur e work
on multi-agent behaviors. In EE, an evolutionary algo-
rithm is distributed amongstand embodiedwithin a pop-
ulation of physicalrobotsthat reproducewith oneanother
while situated in the task envir onment. We have built a
population of eight robots and successfullyimplemented
our first experiments.Thecontrollersevolvedby EE com-
pare favorably to hand-designedsolutions for a simple
task. We detail our methodology, report our initial re-
sults,and discussthe application of EE to moreadvanced
and distributed roboticstasks.

1 Intr oduction

Ourwork is inspiredby thefollowing vision. A largenumber
of robotsfreely interactwith eachotherin a sharedenviron-
ment, attemptingto performsometask—saythe collection
of objectsrepresentingfood or energy. Therobotsmatewith
eachother, i.e., exchangegeneticmaterial,producing(off-
spring)controlprogramsthatbecomeresidentin othermem-
bersof the robot population. Naturally, the likelihoodof a
robot producingoffspring is regulatedby its ability to per-
form thetaskor collect‘energy.’ Further, thereis noneedfor
humaninterventioneitherto evaluate,breed,or repositionthe
robotsfor new trials—thepopulationof robotsevolveshands-
free. Many substantialtechnologicaldemandsaremadeby
thisvision,andconsiderablealgorithmicdetailmustbeadded
beforeit is workable.

We have developedthis vision (to our knowledgefirst de-
scribedin [Harvey, 1995]) into a methodologywe call em-
bodiedevolution(EE).Wedefineembodiedevolutionasevo-
lution that takesplacein a populationof real robots,andwe
stipulatethat the evolutionary algorithm is to executein a
distributedandasynchronousmannerwithin thatpopulation.
Thus,we distinguishEE from methodsthatseriallyevaluate
candidatecontrollerson a singlerobotaswell asalgorithms
thatmaintainandmanipulatethespecificationsof individual
agentsin a centralizedmanner. We wish to createa popula-

tion of physicalrobotsthat evolve autonomouslyaswell as
performtheir tasksautonomously. This paperintroducesour
implementationof embodiedevolution andreportsresultsof
initial experimentsthatprovidethefirst proof-of-concept.

2 Moti vesand RelatedWork

TheEEmethodologyis motivatedby threedifferentresearch
areas.We view EE asanartificial life experiment,asanevo-
lutionaryrobotics(ER) tool, and,in particular, asa substrate
for theevolutionof collective roboticsbehaviors.

2.1 Artificial Life

The adaptive mechanismof naturalevolution is completely
decentralizedanddistributed. Evaluationis implicit andre-
productionis carriedout autonomouslyby the agentsin the
population—notat the bequestof somecentralizedauthor-
ity. Theartificial life literatureprovidesseveralexamplesof
simulatedsystemswhereagentbehavior andreproductiveac-
tivity areintegrated[WernerandDyer, 1991, Fontana,1991,
Ray, 1991, Ventrella,1998]. In thesesystems,agentbehav-
ior either impactsreproductiondirectly, or, in somecases,
is synonymouswith reproduction. Theseexperimentsen-
ableresearchersto explorethecritical effectsthatresultfrom
the merging of reproductive behavior with otherbehaviors.
In contrast,experimentsthat use physical robotshave not
beenable to integratereproductionwith other autonomous
behaviors. Although someevolutionary roboticshas used
real robotsfor evaluationof individuals, the evolving pop-
ulation is virtual—asetof controllerscentrallystoredeither
off-boardor on-board—andsoreproductioncannotoccurbe-
tweentwo robots.A significantmotivefor ourEEresearchis
to implement,in a populationof real robots,artificial evolu-
tion usingthedistributedandautonomouspropertiesof natu-
ral evolution. We wish to employ theidealsof autonomyand
distributedcontrolnotonly in thetaskbehavior of robots,but
in theiradaptivemechanismaswell.

2.2 Evolutionary Robotics

Evolutionary Robotics (ER) seeksto offer an alternative
to the hand-designof robotic controllers[Clif f et al., 1993,
HusbandsandHarvey, 1992]. ERsometimesusesrealrobots



(typically one or a small number) to evaluate all the
controllersthat arise during evolution [Harvey etal., 1993,
FloreanoandMondada,1994, FloreanoandMondada,1996,
Nolfi, 1997]. But, evaluating controllers serially on real
robotsis time consuming,evenif theevaluationscanbeper-
formedwithout humansupervision. Accordingly, the large
numberof evaluationsrequiredfor evolutionaryalgorithms
makessimulationan attractive methodfor the evaluationof
candidatecontrollers.Unfortunately, a lack of fidelity in the
simulatorcanleadto problemsof transference; that is, con-
trollers evolved in simulation do not accountfor the sub-
tleties in the physical characteristicsof the robots or the
task environment and fail when transferredto real robots
[Brooks,1992, MataricandCliff, 1996].

Transferenceproblems can provably be eliminated
through careful design of the simulator [Jakobi, 1997a,
Jakobi, 1997b], but only by theassumptionthat theenviron-
mental factorscritical for the task are known. Distributed
roboticsapplicationsareparticularlyproblematicin this re-
gardbecausesuchcritical environmentalfactorsmaybediffi-
cult to ascertaindueto thecomplexity of theenvironmentand
the tightly-coupledinteractionsof a largenumberof robots.
Even whenknown, the complexity of modelingtheseenvi-
ronmentalfactors,especiallyfor high resolutionsensoryap-
paratus(e.g.,vision), maymake simulationslower thanreal
time. Yet,withoutthehelpof simulationthelargenumbersof
evaluationsrequiredfor evolutionarytechniquesseemspro-
hibitive. EE is our responseto the dilemma betweenfi-
delityandspeed.Embodiedevolutiondoesnotusesimulation
andthereforeavoids transferencecompletely, andEE usesa
largenumberof robotsto parallelizethe evaluationprocess,
therebyproviding speedup.

2.3 CollectiveRobotics

Distributedroboticssystemsposeseriouschallengesto estab-
lishedcontroller-designmethods.Distributedcontrol is easy
to achieve if the decompositionof a problemis known and
the problemsub-partsareneatlyseparableinto independent
tasks;in sucha case,we build an independentautonomous
agentfor eachsub-problem(usingeitherhanddesignor ma-
chinelearning).Thestructuresof mostreal-world problems,
however, areneitherknown a priori , nor composedof neatly
separablesub-parts.As a result,muchwork to-datein col-
lective roboticsfocuseson restrictedcases,suchassystems
that are composedof homogeneousand independentsub-
systems,for exampleflockingandforaging.Typically, agents
in suchexperimentsusehand-built (non-learning)controller
architectures[Beckersetal., 1994, BalchandArkin, 1995,
Rusetal., 1995, Donaldetal., 1997]. Work that does in-
volve learning typically occurs in simulation [Tan,1993,
Littman,1994, SaundersandPollack,1996, Balch,1997],
or in relatively simple physical domains/environments
[MahadevanandConnell,1991, Mataric,1994a,
Mataric,1994b, Parker, 1997, Uchibeetal., 1998].

The difficulties of accomplishing highly coordinated
multi-robotbehavior in complex interactivedomainsprovide
the third areaof motivation for EE. To date, evolutionary
roboticshasnotaddressedcollectivetasksin realrobots(nor,
for that matter, in simulation)becauseof the many techni-
calandengineeringchallengesinvolved,suchastheneedfor
continuouspower andthedifficulty of coordinatingmultiple
robots.As robotpopulationsbecomelarger(on theorderof
hundredsor thousands)anddeployed in morecomplex en-
vironments,the lesstenablea centralizedevolutionaryalgo-
rithm becomes;communicationbottlenecksarisewith a cen-
tralizedevolutionaryalgorithmandsynchronizedevaluation
andreproductionbecomedifficult.

However, EE doesnot usea centralizedevolutionaryal-
gorithm. Our definition of EE stipulatesthat the adaptive
mechanismmustbe distributed. This distinguishesembod-
iedevolutionfrom themereparallelizationof embodiedeval-
uationsusing a large numberof robots(which would have
no algorithmicdistinctionfrom existing work in ER). As an
intrinsically population-basedmethodwhererobotsadaptin
the taskenvironment,embodiedevolution potentiallyoffers
anidealsubstratewith whichto studyemergentgroupbehav-
ior andexploremechanismsthatadaptively discoverproblem
decomposition.As well asproviding a substratefor study-
ing distributedbehavior, thedistributedarchitectureof EEen-
suresthat theadaptive mechanismalsoadheresto the ideals
of scalabilityand robustness.Finally, EE hasthe potential
to beusedwhereagentsmustevolve while deployed“in the
field”—an issuenot usuallyincludedin ER goals,but anim-
portantconsiderationfor thelong term.

2.4 Unifying ALife, ER, and CollectiveRobotics

Embodiedevolution provides a framework that begins to
unify artificial life, evolutionary robotics, and collective
robotics. Eachof theseareasprovide motivesfor embodied
evolution, andtogetherformulatea long-termgoal for their
integration.

In summary, severalissuesareproblematicfor currentER
methodswhenappliedto multi-agentdomains:

� Weareinterestedin theinteractionof many agents,but
currentERmethodsscalepoorly, and

� We needto evaluatea largenumberof candidatecon-
trollers,andit takestoo long to performtheseevalua-
tionsseriallyonarealrobot,yet

� Weneedto carryoutevaluationsin realrobotsto avoid
transferenceproblems.

Theseapparentdifficultiescanbeturnedto ouradvantage
by embodyingan evolutionaryalgorithmin a populationof
robotsthataresituatedin a single,sharedenvironment:

� EE is a population-basedmethod,which provides a
largenumberof agents,andits distributedarchitecture
scaleswell.

� By usinga largenumberof robotswe performa large
numberof evaluationsin parallel.



� Becausewe userealrobots,thereis no transferenceto
causeproblems.Theinteractionbetweenagentsoccurs
without thecomputationaloverheadof simulationand
with perfectfidelity. Weusetherealworld to actas“its
own bestmodel” [Brooks,1991].

3 Implementing EmbodiedEvolution

Our first experimentsin embodiedevolution requirethatwe
constructapopulationof robots,acontinuouspowerdelivery
system,anda distributedevolutionaryalgorithm. Here,we
review eachof thesein turn. We alsonote the revisedrole
thatsimulationtakesin ourwork.

3.1 A Population of Robots

Embodiedevolution requiresa largernumberof robotsthan
that usedin any evolutionary robotics work to-date. The
short-termproof-of-conceptexperiments(describedin the
next section)requireonly minimalcapabilitiesof eachrobot.
Similarly, the long-termobjectivesof EE emphasizethe in-
teractionof robotsratherthanthesophisticationof individual
robots. Accordingly, we have built a populationof simple
robotsof our own designthat arequite minimal in their in-
dividual capacityyet have thenecessarycapabilitiesfor EE.
Ourrobotsemploy the“Cricket” micro-controllerboard,sup-
plied by the MIT Media Laboratory[Resnicketal., 1997],
which usesa PIC micro-controller. Shown in Figure1, each
robot measures12cm in diameterand hastwo light sensor
inputsandtwo motoroutputsaswell aslocal-rangeomnidi-
rectionalinfra-redcommunication.

Figure1: (Left) The robot designusedin our initial EE ex-
periments.Thedirectionalinfra-reddiodesaredirectedver-
tically downwardsandusereflectanceoff thefloor to achieve
local omnidirectionalcommunication. A: Infra-red trans-
mit/receive;B: PICmicro-controller;C: Legomotor;D: Tup-
perware body; E: Rechargeablecell; F: Recharge circuit.
(Right) Robotundersideshowing the two light sensorsand
four contactpointsthatcollectpower from thefloor.

3.2 ContinuousPower Technology

The power requirementsfor embodiedevolution demanda
novel powerdeliverysystem.Batterypower is ableto sustain
a robotonly for aperiodon theorderof hours,oftennomore

than two or three[Brooks,1992]. Longerperiodsof unin-
terruptedpower canbe achieved by eithertetheringa robot
directly to a powersource[MondadaandFloreano,1996], or
by providing batteryrecharge stationsfor the robot to visit
periodically. Nevertheless,tetherseasilytanglewith only a
few robots,andrechargestationscannot be madetranspar-
ent with respectto the robotic task,as they force robotsto
interrupt their activity for non-trivial amountsof time. We
have developedandrefinedanalternative methodthat trans-
parentlyprovidescontinuous,untetheredpower.

Our robotsrunonapoweredfloor thatis constructedwith
modular interlocking panels. Eachpanelhasa numberof
strips of stainless-steeltape that alternatelyconnectto the
positiveandnegativepolesof aDC powersupply. Eachrobot
hasfour contactpointson theundersideof its body, shown in
Figure1 (right). Thegeometryof thecontactsguaranteesthat
at leastonepoint canmake contactwith eachpoleof theDC
supply, regardlessof the rotationor translationof the robot
onthefloor. Thepowerdrawn from therobot’scontactpoints
is rectifiedanddeliveredto therobot’scontrollerandmotors.
Poweris alsosentto acircuit thatmaintainsasmallrecharge-
ablecell,whichis usedonly in theeventof momentarylossof
contactwith thefloor. While building our poweredfloor, we
learnedof two otherresearchgroupsthathave built floorsof
similar construction[Martinoli et al., 1997, Keating,1998].
Theseparallelefforts attestto theviability andutility of this
power supply approach. Other approaches[AAIS, 1998],
like earlier prototypesof our own, usea floor and ceiling
“bumper-car” styleset-up.

3.3 A Distributed Evolutionary Algorithm

Theprincipalcomponentsof any evolutionaryalgorithmare
evaluationandreproduction,andboth of thesemustbe car-
ried out autonomouslyby andbetweenthe robotsin a dis-
tributedfashionfor EE to scaleeffectively. Becausethepro-
cessof evaluationis carriedoutautonomouslyby eachrobot,
somemetricmustbeprogrammedin. This canbequite im-
plicit, for example,wherefailing to maintainadequatepower
resultsin “death” [MondadaandFloreano,1996]. Or, it can
beexplicitly hard-coded,for example,wherefitnessis afunc-
tion of objectscollectedandtime. Whatever metric is used,
performancemustbemonitoredby therobot itself, asno ex-
ternalobserverexiststo measurearobotsability explicitly.

Reproductionin EE must also be both distributed and
asynchronous.Assumingthat we cannotreally createnew
robotsspontaneously, theoffspringmustbeimplementedus-
ing (other)robotsof thesamepopulation.And, if therobots
do not have structurallyreconfigurablebodies,reproduction
mustsimplymeantheexchangeof controlprogramcode.

In general,selectionin anevolutionaryalgorithmmaybe
realizedby having more-fit individuals supply genes(i.e.,
be parents)or by having less-fitindividualslosegenes(i.e.,
be replacedby the offspring) or by a combinationof both.
The Microbial GA [Harvey, 1996] usesthis observation to
simplify the steady-stategeneticalgorithm;ratherthanpick



two (above-averagefitness)parentsandproduceanoffspring
from the combinationof their genesto replacea (below-
average)third, the Microbial GA selectstwo individualsat
randomandoverwritessomeof the genesof the lessfit (of
thetwo) with thosefrom themorefit. In effect, thelessfit of
thetwo becomestheoffspring.

3.3.1Probabilistic GeneTransfer Algorithm

We have developeda decentralizedandprobabilisticversion
of theMicrobial GA for usein EEthatwecall theProbabilis-
tic GeneTransferAlgorithm (PGTA). This methodof repro-
ductionis particularlyvaluablefor evolutionaryroboticsbe-
causeit requiresthatonly two robotsmeetfor a reproduction
eventto occur. Geneticinformationthustravelsvia local re-
productionevents,accordingto thelocationsandmovements
of therobots. In thePGTA, eachrobotpursuesreproductive
activity concurrentlywith its taskbehavior—thereis no “re-
productionmode”assuch.

Eachrobot maintainsa virtual energy level that reflects
therobot’sperformanceat its taskandeachrobotprobabilis-
tically broadcastsgeneticinformationonits local-rangecom-
municationchannelatarateproportionalto thisenergy level.
Eachbroadcastcontainsa mutatedversionof onerandomly-
selectedgenefrom the robot’s genome.If anotherrobot re-
ceivesthebroadcast,that robotmayallow thereceivedgene
valueto overwrite its own correspondinggene. The receiv-
ing robot acceptsthe broadcastgenewith a probability in-
verselyrelatedto its own energy level. Robotswith higher
energy thusattemptto reproduce,andresistthereproductive
attemptsof others,more frequentlythan robotswith lower
energy. But, becausesendingandreceiving is probabilistic,
andgenesarepickedat random,thePGTA doesnot guaran-
tee that a fitter robot will transferall its genesto a lessfit
robot.Onaverageeachis left with amixtureof genesin pro-
portion to their relative energy levels. This approximatesa
fitness-proportionaterecombinativeevolutionaryalgorithm.

In thePGTA, a broadcastingrobot is unawareof who, if
anyone, is within rangeof the broadcast—thereis no need
to coordinatea reproductioneventbetweentwo robots. No-
ticealsothateachrobot’sreproductiveactionsaremodulated
only by their own energy levels—therobotsdo not needto
know eachother’senergy levels.Theonly databroadcastare
genes—norobot identifiersor energy valuesareexchanged.
Eachreproductiveeventinvolvesonly minimalunidirectional
communication,makingthealgorithmvery resilientto genes
“dropped” in communication.Overall, the PGTA (summa-
rizedin Figure4) providesaparsimoniousalgorithmsuitably
robustfor implementationin apopulationof robots.

3.4 The Roleof Simulation in EE

One of the primary benefitsof EE is that it eliminatesthe
difficulties of the simulate-and-transfermethod,frequently
usedin ER. Nevertheless,we acknowledgethat simulation
is a valuabletool, usedby researchersin many disciplinesto

gain insight andunderstandingof complex systems.In this
spirit, we have built a simulatorof theEE system.Theaim
of oursimulatoris not to provideahigh-fidelitysimulationof
ourrobotsandtheirenvironment;it is notpartof ourmethod-
ology to transfersolutionsfrom the simulatorto the actual
robots.Rather, thesimulatorservesasa testbedfor our evo-
lutionary algorithmand the setupof our experiments. Our
simulationsof thenascentEE systemprovidedthefirst indi-
cationsof its viability, andhelpedidentify critical factorsin
our approach.We investigatethe setupof our experiments
with theaid of simulationandthenre-implementall experi-
mentsfrom scratchin therealrobotpopulation.

4 Experimentsand Results

Figure2: Therobotpenfor thephototaxisexperiments.Eight
robots,thepower-floor, andthelight in thecenterareshown.
TheuniqueID of arobotis collectedwhenit reachesthelight
(via infra red receiverson theoverheadbeam). This datais
time-stampedandstoredfor monitoringexperimentprogress.

4.1 A PhototaxisTask

Our first embodiedevolution environmentemploys eight of
our robots.Thebehavior of a robotis controlledby a simple
artificial neural-network architecture,the weightsof which
are evolved to performphototaxissimilar to that described
in [Braitenberg,1984]. The taskenvironmentconsistsof a
130cm by 200cm pen with a lamp locatedin the middle,
visible from all positionson the floor plane,asseenin Fig-
ure 2. The robot task is to reachthe light from any start-
ing point in the pen. An infra-red beaconmountedabove
thelight signalsa robotwhenit reachesthelight sourceand
triggersa built-in resetbehavior that moves the robot to a
randomposition and orientationalong the peripheryof the
pen,from wheretherobotrecommencesits light-seekingbe-
havior. A secondbuilt-in behavior, which turns the robot
in-placeby a randomangle,is invoked by a robot when its
sensorsindicatethat it might be physicallystuck,i.e., when
its sensorreadingshave not changedsignificantlyfor several
time steps. Thesetwo built-in behaviors operateindepen-
dently of the evolving neural-network controller. Because



the pen containsa multitude of robots, the de facto envi-
ronmentalsoincludessomeamountof robot-to-robotinter-
ference[Schneider-Font́anandMataric,1996]; therefore,the
taskimplicitly requiresthateachrobotalsosuccessfullyover-
comethis interference.

4.2 Control Ar chitecture

Our initial experimentsusea simpleartificial neural-network
control architectureto serve as the evolving substrate,de-
pictedin Figure3. Theweightsof thenetwork areevolved.
Thenetwork consistsof two outputnodes,onefor eachof the
two motors,one binary-valuedinput node,which indicates
whichof therobot’stwo light sensorsis receiving morelight,
andonebiasnode.Beinga fully-connectedfeed-forwardar-
chitecture,therearefour weights.Eachweighthasaninteger
valuein therange[-8, 7]. Thevaluessentto theoutputnodes
(controllingmotorspeedanddirection)aretheweightedsum
of the input nodes;no sigmoid function is used. This net-
work is simpleenoughto be computableby the PIC micro-
controllerin realtime,yetprovidesanon-trivial searchspace
of

�����
network weightconfigurations.

As no individual learningtakesplacein our experiments,
robotsonly get new weight valuesfrom otherrobotsduring
reproduction,which is performedvia local broadcastson the
robots’ infra-red communicationschannel. The rangeof a
broadcastis suchthat a robot may communicatewith any
otherrobotwhentheperipheriesof their bodiesarelessthan
about4cmapart.

1

[-8, 7]
Weights
Evolving

(1 if True, 0 if False)

?

Bias

Predicate

Σ

Σ

Right Motor

Input

1/0

Outputs

Left Motor
Sensor Sensor

Right>Left

Figure3: Controlarchitecturefor phototaxisexperiment.The
one-bitinput is 1 if left sensoris brighterthanright sensor, 0
otherwise;thebiasnodehasconstantactivationof 1.

4.3 Maintaining ReproductiveEnergy Levels

Energy levelsregulatereproductioneventsandshouldreflect
the robotsperformanceat the task. In our experiments,a
robot’senergy is increasedonly whenit reachesthelight and
is decreasedonly whenit broadcastsagene.Sincetherobot’s
rateof sendinggenesis proportionalto its energy level and
decrementsoccurwith eachsend,therateof broadcastingde-
caysexponentiallyover thetime from its mostrecentvisit to
the light. Themorefrequentlya robot reachesthe light, the
higher its energy level is likely to be at any instant(up to
thesaturationpointdefinedby themaximalallowedenergy).

The energy level thus approximatesa leaky integral of the
robot’sperformanceat its task(i.e.,thefrequency with which
it reachesthe light). Figure4 providesan overview of how
the reproductive energy levelsaremaintainedin our experi-
mentsandhow thePGTA is integratedwith therobots’other
behaviors.

define embodied_evolve
initialize_genes[]
energy = min_energy
repeat forever
if (excited?)

send(genes[random(num_genes)] + mutation)
if (receptive? and received?)

genes[indexof(received)] = valof(received)
do_task_specific_behavior
energy = limit(energy + reward - penalty)

endrepeat
enddefine

Figure4: Pseudocodeof controlprogramthatimplementsthe
ProbabilisticGeneTransferAlgorithm (PGTA). This codeis
run on every robot. No methodsfor synchronizingor coor-
dinatingtherobots,nor any centralizedelements,areusedin
thePGTA. Thepredicatesexcited?andreceptive?areprob-
abilistic functionsof energy. send takes a genevalueand
broadcastsit on local infrared(wrappedwith genelocus).re-
ceived? is true if any genereceivedon infrared.indexof and
valueof returnthe locusandvalueof receivedgene,respec-
tively. limit boundsthe energy valuebetweenmin energy
andmax energy. random returnsaninteger in therangeof
its argument. task specificbehaviour includesmonitoring
performanceat thetaskandsettingthevaluesof reward and
penalty. In our phototaxisexperiments,min energy is 10;
max energy is 255. excited? returnstrue if energy � ran-
dom(max energy), false otherwise;receptive returnstrue
if energy � random(max energy), false otherwise. Each
gene,genes[1..4], is a weightvaluefor thenetwork. initial-
ize genessetsall genesto 0. mutation returns 	�

� � ��� ���
with uniform probability. task specificbehavior includes
readingsensorvalues,updatingnetwork outputs,settingmo-
tor speeds/directionsaccordingly, monitoringsensorreadings
andperformingrandomturn if robotappearsto bestuck,and
monitoringfor arrival at thebeacon.reward is setto 127,if
therobotdetectsthebeacon,0 otherwise,andpenalty is set
to

�
whenevertherobotbroadcastsa gene,0 otherwise.

4.4 Experimental Results

Figure5 showsthefrequency with whichthelight is success-
fully reachedby the robot populationover time in eachof
threeexperiments.Themainexperimentevolvestheneural-
network weightsto performthelight-seekingtask.Theinitial
conditionof thenetworksin theevolution experimentis that
all weightshave a valueof zero(this configurationproduces
nooutputto themotorsandprovidesaneutralstartingpoint).
Theothertwo experimentsarecontrolswherethe robotsdo
notevolve;in onecasetherobots’weightsarerandomvalues,



and in the other the robotsuseweightsof a hand-designed
solution. As Figure5 shows, the two controlsshow a broad
rangeof possibleperformancelevelsandprovide usefulref-
erencesagainstwhichto judgethesuccessof thetrialswhere
evolutiontakesplace.Weseethatembodiedevolutionallows
the populationof robots to achieve performancefavorably
comparableto that of our hand-designedsolution. Though
the robotslearnto approachthe light in a multi-robot envi-
ronment,they areableto performeffectively in isolation,as
well. Theseresultsprovide thefirst evidencethata fully de-
centralized,asynchronousevolutionaryalgorithmcanoper-
ateeffectively in a populationof physicalrobotsandprovide
high-qualitycontrol programs. Moreover, theseresultsare
achievedusingacrudemeasureof performancethatdoesnot
averageover many trials. In fact, theenergy level is anodd
representationof performancecomparedto the usualmean-
ing of “fitness.” A robot’s energy level is not resetwhenthe
robotreceivesanew specificationduringareproductionevent
andis thereforea measureof theperformanceof thevarious
controllersthathavebeenresidenton thatrobot.
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Figure 5: Averagehit ratesover time. Threecurvesshow
performanceof the robot populationusing hand-designed
(non-evolved),evolved, andrandom(non-evolved)network
weights. The datafrom the hand-designedandevolved ex-
perimentsare averagedover six runs, while the data from
therandom-networksexperimentareaveragedovertwo runs.
Eachrun lasts140 minutesanduseseight robots. The ver-
tical axis representsthe averagerate (in hits per minute)at
whichrobotsreachthelight. A timewindow of 20minutesis
usedto computetheinstantaneoushit ratefor eachdatapoint
on thegraph(hencethefirst datapointsappearat Time = 20
minutes).Errorbarsontheevolvedrun,shown every10min-
utes,show +/- onestandarddeviation. Thoughthe evolved
solutionsbegin with network weightsof zero,weseethatthe
robotsachieveanaverageperformanceof fourhitsperminute
within thefirst twentyminutesof theexperimentandeventu-
ally meetthehand-built hit rate.

Despiteits minimalstructure,theartificial neural-network
controlarchitectureusedin therobotsallowsasurprisingva-
riety of solutionsto be discoveredby the evolutionarypro-

cess.Interestingly, thebestevolvedsolutionsexhibit behav-
iors that are qualitatively different from our hand-designed
solution; evolution appearsto favor a “looping” solution,
whereas,with our hand-designedsolution,the robot “swag-
gers”to the light, asshown in Figure6. Thereasonsfor this
arenotknown andwe intendto addressthis in futurework.

Robot

Evolved Looping BehaviorHand-Designed Swagger Behavior

Light Source

Figure6: Trajectoriesof light-seekingsolutions.

5 Future Work and Conclusions

5.1 Futur eWork

Thereexist a numberof controlexperimentsthatwill helpus
mapthe parameterspaceof the PGTA. Throughthesecon-
trols,weexpectto refinethePGTA andunderstandmorepre-
ciselythedynamicsof thealgorithmandthesettingsthatpro-
vide themostrobustoperation.For example,simulationsug-
geststhatgoodsolutionsarenotstablein thepopulationif we
remove therobots’ability to resistthereproductiveattempts
of others.Theresistancemodelweuse,while effective,is not
known to be optimal. Otherparameterswe will investigate
includethe ratesat which a robot’s energy is increasedand
decreasedas it reachesthe light andattemptsreproduction,
respectively. We arein theprocessof developingmorecom-
plex taskenvironmentsandcontrolarchitecturesfor our ex-
periments,beginningwith a recurrentversionof thenetwork
architecturethat will operateon raw sensorinputs. Though
thephototaxistaskdescribedin thisreportis simpleanddoes
not to involve explicit robot interaction,the transparency of
this domainallows us to investigatethe strongimplicit in-
teractive forceswithin the EE approach. For example,the
reproductiveprocessandphysicalrobot-to-robotinterference
aretwo typesof interactionthatwearecurrentlyinvestigating
beforemoving to a morecomplex task.

Although the performanceof the looping behavior (dis-
coveredby evolution)appearsslightly moreeffectivethanthe
(hand-built) swaggerbehavior, this result is not statistically
significantwith thedatacollectedto-date.If thisresultshould
prove reliable,one questionwe hopeto answeris why the
looping,whichseemslessefficient,is moreeffectivethanthe
swagger. Onehypothesisis that the looping behavior over-



comesthephysicalinterferencecausedby theotherrobotsin
the penmoreefficiently thandoesour hand-designedsolu-
tion. Anotherhypothesisis thatloopingis morerobustto the
inevitable hardwarevariancesthat exist betweenthe robots.
Or, perhaps,wewill find thecauseis moremundane.

As stated,a long-termgoal of distributed robotics is a
methodfor the automaticdiscovery of problemdecomposi-
tion andbalancinglocal autonomywith groupcoordination.
By employing a large numberof robotstogetherin the task
environmentandallowing themto evolve interactive behav-
iors,we avoid introducingpreconceptionsabouthow a prob-
lem shouldbe decomposed,how many robotsshouldbeas-
signedto eachtask/sub-task,or how many groups/sub-groups
will beneeded.Potentially, we allow the robotsto discover
appropriateworkinggroupsandinteractivebehaviorsthatre-
flect thenatureandstructureof the taskat hand. Achieving
this will requirethat we addressmany critical issues:credit
assignment,thebalanceof cooperationandcompetition,ho-
mogeneityandheterogeneity, encapsulationandmodularity.

5.2 Conclusions

Embodiedevolution is a new methodologyfor evolutionary
robotics. EE usesa populationof robots that evolve to-
getherwhile situatedin the taskenvironment. The adaptive
mechanismis distributed in the populationusing robot-to-
robot reproductionthat is carriedout autonomouslyby the
robots.Evolutionaryadaptationis seamlesslyintegratedwith
the robot’s taskbehavior. Our experimentsin EE have em-
ployedapopulationof eightrobotsthataresuppliedcontinu-
ouspowervia anelectrifiedfloor. Wehavedevelopedanevo-
lutionaryalgorithmthatoperatesvia theprobabilistictransfer
of geneticinformationbetweenrobotson local-rangecom-
munication. This PGTA is entirelydistributedandis robust
in waysthatmake it effective for implementationin a popu-
lationof robots.

EE providesa numberof opportunities. Firstly, EE en-
ablesthestudyof theeffectsof integratingreproductionwith
otherautonomousbehaviors into realrobotsin a mannerthat
haspreviouslyonly beenpossiblein simulatedALife experi-
ments.Secondly, EE offersadvantagesover otherER meth-
ods: specifically, speed-upin time by parallelizingevalua-
tions,andtheeliminationof transferenceproblems,sinceall
evaluationsarecarriedout on real robots. Thirdly, EE pro-
videsa substratefor future researchto investigatecollective
roboticsbehaviors. However, EE alsointroducessomecom-
plicationsfrom which establishedER methodsdo not suf-
fer; for example,becausewe do not usea centralizedmech-
anism,thecollectionof experimentaldatais mademoredif-
ficult. Also, becausereproductionin EE is basedupon the
principleof locality, EE is susceptibleto failureif therobots
becomephysically, andthereforereproductively, isolated.Fi-
nally, thoughembodiedevolution appearsparticularlysuited
to teamtasks,theprecisemannerin which EE shouldbeap-
plied to teamevolution is unclear—reproductionmay inter-
ferewith taskbehavior.

Ourexperimentsprovidethefirst proof-of-conceptfor em-
bodiedevolution. We havesuccessfullyappliedEE to a sim-
ple phototaxistask.Theneural-network controlarchitecture,
thoughminimal, hasa non-trivial searchspaceandprovides
surprisinglynovel solutionsfor phototaxis.Resultsshow so-
lutions evolved with EE to performcomparablyto our best
hand-designedsolutions. Future experimentswill provide
greaterclarity on the advantagesand difficulties of the EE
method.
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