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Abstract- We intr oduce Embodied Evolution (EE) as a
methodology for the automatic design of robotic con-
trollers. EE is an evolutionary robotics (ER) tech-
nigue that avoidsthe pitfalls of the simulate-and-transfer
method, allows the speed-upof evaluation time by utiliz-
ing parallelism, and is particularly suited to futur e work
on multi-agent behaviors. In EE, an evolutionary algo-
rithm is distrib uted amongstand embodiedwithin a pop-
ulation of physicalrobotsthat reproducewith oneanother
while situated in the task ervironment. We have built a
population of eight robots and successfullyimplemented
our first experiments.The controllers evolvedby EE com-
pare favorably to hand-designedsolutions for a simple
task. We detail our methodology report our initial re-
sults,and discussthe application of EE to more advanced
and distrib uted roboticstasks.

1 Intr oduction

Ourwork isinspiredby thefollowing vision. A largenumber
of robotsfreely interactwith eachotherin a sharederviron-

ment, attemptingto perform sometask—saythe collection
of objectsrepresentindood or enegy. Therobotsmatewith

eachother i.e., exchangegeneticmaterial, producing(off-

spring)controlprogramghatbecomeresidenin othermem-
bersof the robot population. Naturally, the likelihood of a
robot producingoffspring is regulatedby its ability to per

form thetaskor collect'enemy.” Further thereis no needfor

humaninterventioneitherto evaluate breed or repositionthe
robotsfor new trials—thepopulationof robotsevolveshands-
free. Many substantiatechnologicademandsare madeby

thisvision,andconsiderablalgorithmicdetailmustbeadded
beforeit is workable.

We have developedthis vision (to our knowledgefirst de-
scribedin [Harvey, 1995) into a methodologywe call em-
bodiedevolution (EE). We defineembodiedevolution asevo-
lution thattakesplacein a populationof real robots,andwe
stipulatethat the evolutionary algorithmis to executein a
distributedandasynchronoumannerwithin thatpopulation.
Thus,we distinguishEE from methodghat serially evaluate
candidatecontrollerson a singlerobotaswell asalgorithms
thatmaintainandmanipulatethe specificationof individual
agentsn a centralizedmanner We wish to createa popula-

tion of physicalrobotsthat evolve autonomoushaswell as
performtheir tasksautonomouslyThis paperintroducesour
implementatiorof embodiedevolution andreportsresultsof
initial experimentghatprovide thefirst proof-of-concept.

2 Motivesand RelatedWork

The EE methodologyis motivatedby threedifferentresearch
areasWe view EE asanatrtificial life experimentasanevo-
lutionaryrobaotics(ER) tool, and,in particular asa substrate
for theevolution of collective roboticsbehaiors.

2.1 Artificial Life

The adaptve mechanisnof naturalevolution is completely
decentralizednddistributed. Evaluationis implicit andre-
productionis carriedout autonomoushpy the agentsin the
population—notat the bequesibf somecentralizedauthor
ity. Theartificial life literatureprovidesseveral examplesof
simulatedsystemsvhereagentbehaior andreproductveac-
tivity areintegrated[WernerandDyer, 1991, Fontana, 1991,
Ray 1991, Ventrella,1999. In thesesystemsagentbehar-
ior eitherimpactsreproductiondirectly, or, in somecases,
is synorymouswith reproduction. Theseexperimentsen-
ableresearcher® explorethecritical effectsthatresultfrom
the meming of reproductive behaior with otherbehaiors.
In contrast,experimentsthat use physical robots have not
beenable to integratereproductionwith other autonomous
behaiors. Although someevolutionary robotics has used
real robotsfor evaluationof individuals, the evolving pop-
ulationis virtual—a setof controllerscentrally storedeither
off-boardor on-board—andoreproductiorcannotoccurbe-
tweentwo robots.A significantmotive for our EE researchis
to implement,in a populationof real robots,artificial evolu-
tion usingthedistributedandautonomougropertieof natu-
ral evolution. We wish to emplgy theidealsof autonomyand
distributedcontrolnotonly in thetaskbehaior of robots but
in their adaptve mechanisnaswell.

2.2 Evolutionary Robotics

Evolutionary Robotics (ER) seeksto offer an alternatve
to the hand-desigrof robotic controllers[Cliff etal., 1993
HusbandsandHarvey, 1999. ER sometimesisesrealrobots



(typically one or a small number) to evaluate all the
controllersthat arise during evolution [Harvey etal., 1993
FloreancandMondada 1994 FloreancandMondada; 1996
Nolfi, 1997. But, evaluating controllers serially on real
robotsis time consuminggvenif the evaluationscanbe per
formed without humansupervision. Accordingly, the large
numberof evaluationsrequiredfor evolutionary algorithms
makes simulationan attractive methodfor the evaluationof
candidatecontrollers.Unfortunately a lack of fidelity in the
simulatorcanleadto problemsof transfeence thatis, con-
trollers evolved in simulationdo not accountfor the sub-
tleties in the physical characteristicoof the robots or the
task environmentand fail when transferredto real robots
[Brooks,1992 MataricandCliff, 1994.

Transference problems can provably be eliminated
through careful design of the simulator [Jakobi, 1997a
Jalobi, 19974, but only by the assumptiorthatthe erviron-
mentalfactorscritical for the task are known. Distributed
roboticsapplicationsare particularly problematicin this re-
gardbecaussuchcritical environmentafactorsmaybediffi-
cultto ascertairdueto thecompleity of theernvironmentand
the tightly-coupledinteractionsof a large numberof robots.
Evenwhenknown, the compleity of modelingtheseervi-
ronmentalfactors,especiallyfor high resolutionsensoryap-
paratuge.g.,vision), may make simulationslowver thanreal
time. Yet,withoutthe helpof simulationthelargenumbersf
evaluationsrequiredfor evolutionarytechniquesseemspro-
hibitive. EE is our responseo the dilemma betweenfi-
delity andspeed Embodiedevolutiondoesnotusesimulation
andthereforeavoids transferenceompletely and EE usesa
large numberof robotsto parallelizethe evaluationprocess,
therebyproviding speedup.

2.3 Collective Robotics

Distributedroboticssystemgposeseriouschallengeso estab-
lishedcontrollerdesignmethods.Distributed controlis easy
to achieve if the decompositiorof a problemis known and
the problemsub-partsare neatly separablénto independent
tasks;in sucha case,we build anindependenautonomous
agentfor eachsub-problen{usingeitherhanddesignor ma-
chinelearning). The structureof mostreal-world problems,
however, areneitherknown a priori, nor composedf neatly
separablesub-parts.As a result, muchwork to-datein col-
lective roboticsfocuseson restrictedcasessuchassystems
that are composedof homogeneousnd independentsub-
systemsfor exampleflockingandforaging. Typically, agents
in suchexperimentsusehand-huilt (non-learning)controller
architectures[Beckersetal., 1994 BalchandArkin, 1995
Rusetal., 1995 Donaldetal.,1997. Work that doesin-
volve learning typically occursin simulation [Tan,1993
Littman,1994 SaunderandPollack,1996 Balch,1997,
or in relatively simple physical domains/emironments
[MahaderanandConnell,1991, Mataric,1994a
Mataric,1994h Parker, 1997, Uchibeetal., 1999.

The difficulties of accomplishing highly coordinated
multi-robotbehaior in complex interactive domainsprovide
the third areaof motivation for EE. To date, evolutionary
roboticshasnotaddressedollective tasksin realrobots(nor,
for that matter in simulation) becauseof the mary techni-
calandengineeringhallengesnvolved,suchasthe needfor
continuouspower andthe difficulty of coordinatingmultiple
robots. As robot populationsbecomearger (on the orderof
hundredsor thousandsiand deployed in more complex en-
vironments the lesstenablea centralizedevolutionaryalgo-
rithm becomescommunicatiorbottlenecksarisewith a cen-
tralized evolutionaryalgorithmand synchronizedvaluation
andreproductiorbecomedifficult.

However, EE doesnot usea centralizedevolutionaryal-
gorithm. Our definition of EE stipulatesthat the adaptve
mechanisnmustbe distributed. This distinguishesembod-
ied evolutionfrom themereparallelizatiorof embodiecdeval-
uationsusing a large numberof robots (which would have
no algorithmicdistinctionfrom existing work in ER). As an
intrinsically population-basedethodwhererobotsadaptin
the task environment,embodiedevolution potentially offers
anidealsubstratevith whichto studyemegentgroupbeha-
ior andexploremechanism¢hatadaptvely discover problem
decomposition.As well as providing a substrateor study-
ing distributedbehavior, thedistributedarchitecturef EE en-
suresthatthe adaptie mechanisnalsoadherego theideals
of scalability and robustness.Finally, EE hasthe potential
to be usedwhereagentsmustevolve while deployed“in the
field"—anissuenot usuallyincludedin ER goals,but anim-
portantconsideratiorfor thelongterm.

2.4 Unifying ALife, ER, and Collective Robotics

Embodiedevolution provides a framework that begins to
unify artificial life, evolutionary robotics, and collectve
robotics. Eachof theseareasprovide motivesfor embodied
evolution, andtogetherformulatea long-termgoal for their
integration.

In summaryseveralissuesareproblematidor currentER
methodsvhenappliedto multi-agentdomains:

o We areinterestedn theinteractionof mary agentsput

currentER methodsscalepoorly, and

¢ We needto evaluatea large numberof candidatecon-
trollers,andit takestoo long to performtheseevalua-
tionsseriallyonarealrobot,yet

e Weneedto carryoutevaluationsn realrobotsto avoid
transferenc@roblems.
Theseapparentifficultiescanbeturnedto our advantage
by embodyingan evolutionaryalgorithmin a populationof
robotsthataresituatedn asingle,sharecervironment:
e EE is a population-basednethod, which provides a
large numberof agentsandits distributedarchitecture
scaleswell.

¢ By usingalarge numberof robotswe performa large
numberof evaluationgn parallel.



e Becauseave userealrobots,thereis no transferencéo
causeproblems.Theinteractiorbetweeragentoccurs
without the computationabverheadodf simulationand
with perfectfidelity. We usetherealworld to actas“its
own bestmodel”[Brooks,1991].

3 Implementing Embodied Evolution

Our first experimentsn embodiedevolution requirethat we
construcia populationof robots,a continuougpower delivery
system,and a distributed evolutionary algorithm. Here,we
review eachof thesein turn. We alsonotethe revisedrole
thatsimulationtakesin ourwork.

3.1 A Population of Robots

Embodiedevolution requiresa larger numberof robotsthan
that usedin ary evolutionary robotics work to-date. The
short-termproof-of-conceptexperiments(describedin the
next section)requireonly minimal capabilitiesof eachrobot.
Similarly, the long-termobjectivesof EE emphasizéhe in-

teractionof robotsratherthanthe sophisticatiorof individual

robots. Accordingly, we have built a populationof simple
robotsof our own designthat are quite minimal in their in-

dividual capacityyet have the necessargapabilitiesfor EE.

Ourrobotsemploy the“Cricket” micro-controlletboard sup-
plied by the MIT Media Laboratory[Resnicketal., 1997,

which usesa PIC micro-controller Shavn in Figurel, each
robot measured2cmin diameterand hastwo light sensor
inputsandtwo motor outputsaswell aslocal-rangeomnidi-

rectionalinfra-redcommunication.
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Figurel: (Left) Therobotdesignusedin our initial EE ex-
periments.The directionalinfra-reddiodesaredirectedver
tically downwardsandusereflectanceff thefloor to achieve
local omnidirectionalcommunication. A: Infra-red trans-
mit/receve;B: PIC micro-controller,C: Legomotor;D: Tup-
perware body; E: Rechageablecell; F: Rechage circuit.
(Right) Robotundersideshaving the two light sensorsand
four contactpointsthatcollectpowerfrom thefloor.

3.2 Continuous Power Technology

The power requirementdor embodiedevolution demanda
novel powver delivery system Batterypoweris ableto sustain
arobotonly for aperiodontheorderof hours,oftennomore

thantwo or three[Brooks,1993. Longer periodsof unin-
terruptedpower canbe achieved by eithertetheringa robot
directly to a power sourcefMondadaandFloreano,1994, or
by providing batteryrechage stationsfor the robot to visit
periodically Neverthelesstetherseasilytanglewith only a
few robots,andrechage stationscannot be madetranspar
entwith respectto the robotic task, asthey force robotsto
interrupttheir actvity for non-trivial amountsof time. We
have developedandrefinedan alternatve methodthattrans-
parentlyprovidescontinuousuntetheregower.

Ourrobotsrun on a poweredfloor thatis constructedvith
modularinterlocking panels. Eachpanelhasa numberof
strips of stainless-steefape that alternatelyconnectto the
positive andnegative polesof a DC power supply Eachrobot
hasfour contactpointson theundersideof its body, shavn in
Figurel (right). Thegeometryof thecontactguaranteethat
atleastonepoint canmake contactwith eachpole of the DC
supply regardlessof the rotation or translationof the robot
onthefloor. Thepowerdravn from therobot’s contactpoints
is rectifiedanddeliveredto therobot’s controllerandmotors.
Paweris alsosentto acircuit thatmaintainsa smallrechage-
ablecell, whichis usedonly in theeventof momentaryossof
contactwith the floor. While building our poweredfloor, we
learnedof two otherresearclgroupsthathave built floors of
similar construction[Martinoli etal., 1997 Keating,1999.
Theseparallelefforts attestto the viability andutility of this
power supply approach. Other approachegAAIS, 1999,
like earlier prototypesof our own, usea floor and ceiling
“bumpercar” styleset-up.

3.3 A Distrib uted Evolutionary Algorithm

The principalcomponent®f ary evolutionaryalgorithmare
evaluationandreproductionandboth of thesemustbe car

ried out autonomoushby and betweenthe robotsin a dis-

tributedfashionfor EE to scaleeffectively. Becausehe pro-

cessof evaluationis carriedout autonomouslyy eachrobot,
somemetric mustbe programmedn. This canbe quite im-

plicit, for example wherefailing to maintainadequatg@ower
resultsin “death” [MondadaandFloreano,1994. Or, it can
beexplicitly hard-codedfor example wherefitnessis afunc-

tion of objectscollectedandtime. Whaterer metricis used,
performancenustbe monitoredby therobotitself, asno ex-

ternalobsener existsto measure robotsability explicitly.

Reproductionin EE must also be both distributed and
asynchronous.Assumingthat we cannotreally createnew
robotsspontaneouslyhe offspringmustbeimplementedis-
ing (other)robotsof the samepopulation.And, if therobots
do not have structurallyreconfigurablébodies,reproduction
mustsimply meanthe exchangeof controlprogramcode.

In general selectionin anevolutionaryalgorithmmay be
realizedby having more-fit individuals supply genes(i.e.,
be parents)or by having less-fitindividualslose genes(i.e.,
be replacedby the offspring) or by a combinationof both.
The Microbial GA [Harvey, 1996 usesthis obsenation to
simplify the steady-statgeneticalgorithm; ratherthan pick



two (above-averagditness)parentsandproducean offspring
from the combinationof their genesto replacea (below-
average)third, the Microbial GA selectstwo individuals at
randomand overwritessomeof the genesof the lessfit (of
thetwo) with thosefrom the morefit. In effect, the lessfit of
thetwo becomeshe offspring.

3.3.1Probabilistic GeneTransfer Algorithm

We have developeda decentralizedndprobabilisticversion
of the Microbial GA for usein EE thatwe call the Probabilis-
tic GeneTransferAlgorithm (PGTA). This methodof repro-
ductionis particularlyvaluablefor evolutionaryroboticsbe-
causédt requireghatonly two robotsmeetfor areproduction
eventto occur Geneticinformationthustravelsvia local re-
productionevents,accordingo thelocationsandmovements
of therobots. In the PGTA, eachrobot pursueseproductve
actiity concurrentlywith its taskbehaior—thereis no “re-
productionmode”assuch.

Eachrobot maintainsa virtual enegy level that reflects
therobot’s performancet its taskandeachrobotprobabilis-
tically broadcastgenetidnformationonits local-rangecom-
municationchannehtarateproportionalo thisenegy level.
Eachbroadcastontainsa mutatedversionof onerandomly-
selectedgenefrom the robot's genome.If anothemrobot re-
ceivesthe broadcastthatrobotmay allow the recevedgene
valueto overwriteits own correspondingyene. The recev-
ing robot acceptsthe broadcasgenewith a probability in-
verselyrelatedto its own enegy level. Robotswith higher
enegy thusattemptto reproduceandresistthe reproductve
attemptsof others,more frequentlythan robotswith lower
enegy. But, becausesendingandreceving is probabilistic,
andgenesarepicked at randomthe PGTA doesnotguaran-
teethat a fitter robot will transferall its genesto a lessfit
robot. On averageeachis left with a mixture of genesn pro-
portion to their relative enegy levels. This approximatesa
fitness-proportionatecombinatie evolutionaryalgorithm.

In the PGTA, a broadcastingobotis unavareof who, if
arnyone, is within rangeof the broadcast—therés no need
to coordinatea reproductionevent betweerntwo robots. No-
tice alsothateachrobot'sreproductve actionsaremodulated
only by their own enepy levels—therobotsdo not needto
know eachothers enegy levels. The only databroadcasare
genes—naobotidentifiersor enegy valuesareexchanged.
Eachreproductveeventinvolvesonly minimalunidirectional
communicationmakingthe algorithmvery resilientto genes
“dropped”in communication.Overall, the PGTA (summa-
rizedin Figure4) providesa parsimoniouslgorithmsuitably
robustfor implementationn a populationof robots.

3.4 The Role of Simulation in EE

One of the primary benefitsof EE is thatit eliminatesthe
difficulties of the simulate-and-transfemethod, frequently
usedin ER. Neverthelesswe acknavledgethat simulation
is avaluabletool, usedby researchers mary disciplinesto

gaininsight and understandingf complex systems.In this
spirit, we have built a simulatorof the EE system.Theaim
of oursimulatoris notto provide a high-fidelity simulationof
ourrobotsandtheirenvironment;it is notpartof our method-
ology to transfersolutionsfrom the simulatorto the actual
robots. Rather the simulatorsenesasa testbedor our evo-
lutionary algorithm and the setupof our experiments. Our
simulationsof the nascentE systemprovidedthefirst indi-
cationsof its viability, andhelpedidentify critical factorsin
our approach. We investigatethe setupof our experiments
with the aid of simulationandthenre-implementll experi-
mentsfrom scratchin therealrobotpopulation.

4 Experimentsand Results
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Figure2: Therobotpenfor thephototaxisexperimentsEight
robots,the powverfloor, andthelight in the centerareshown.
TheuniquelD of arobotis collectedwhenit reacheshelight
(via infra red receverson the overheadbeam). This datais
time-stampe@ndstoredfor monitoringexperimentprogress.

4.1 A PhototaxisTask

Our first embodiedevolution ervironmentemploys eight of
ourrobots. The behaior of arobotis controlledby a simple
artificial neural-netwrk architecture the weightsof which
are evolved to perform phototaxissimilar to that described
in [Braitenbeg, 1984. The task environmentconsistsof a
130cmby 200cm pen with a lamp locatedin the middle,
visible from all positionson the floor plane,asseenin Fig-
ure 2. Therobottaskis to reachthe light from ary start-
ing point in the pen. An infra-red beaconmountedabore
thelight signalsa robotwhenit reacheghelight sourceand
triggersa built-in resetbehaior that movesthe robotto a
randomposition and orientationalong the peripheryof the
pen,from wherethe robotrecommencets light-seekingoe-
havior. A secondbuilt-in behaior, which turns the robot
in-placeby a randomangle,is invoked by a robotwhenits
sensorsndicatethatit might be physicallystuck,i.e., when
its sensoreadingshave not changedsignificantlyfor several
time steps. Thesetwo built-in behaiors operateindepen-
dently of the evolving neural-netwrk controller Because



the pen containsa multitude of robots, the de facto envi-
ronmentalsoincludessomeamountof robot-to-robotinter
ferencgSchneiderFontanandMataric,1996; thereforethe
taskimplicitly requireghateachrobotalsosuccessfullyver-
comethisinterference.

4.2 Control Ar chitecture

Ourinitial experimentausea simpleartificial neural-netwrk
control architectureto serne as the evolving substrate de-
pictedin Figure3. The weightsof the network areevolved.
Thenetwork consistf two outputnodespnefor eachof the
two motors, one binary-valuedinput node, which indicates
which of therobot'stwo light sensorss receving morelight,

andonebiasnode.Beinga fully-connectedeed-forwardar

chitecturetherearefour weights.Eachweighthasaninteger
valuein therange[-8, 7]. Thevaluessentto theoutputnodes
(controllingmotorspeedanddirection)aretheweightedsum
of the input nodes;no sigmoid function is used. This net-
work is simpleenoughto be computableby the PIC micro-

controllerin realtime, yet providesa non-trivial searctspace
of 16* network weightconfigurations.

As no individual learningtakesplacein our experiments,
robotsonly get new weight valuesfrom otherrobotsduring
reproductionwhichis performedvia local broadcasten the
robots’ infra-red communicationchannel. The rangeof a
broadcasis suchthat a robot may communicatewith ary
otherrobotwhenthe peripherief their bodiesarelessthan
about4dcmapart.

Evolving
Weights
[-8 7]
| Bias |
1 i Right Motor
Predicate Outputs
Left 5 Right 2 ! i
Sensor Sensor * 3 1/ O z !
(1if True, 0 if False) 1 3 Left Motor

Figure3: Controlarchitecturdor phototaxisexperiment.The
one-bitinputis 1 if left sensoiis brighterthanright sensor0
otherwisethe biasnodehasconstanactivationof 1.

4.3 Maintaining Reproductive Energy Levels

Enegy levelsregulatereproductioreventsandshouldreflect
the robots performanceat the task. In our experiments,a
robot'senepy is increaseanly whenit reacheshelight and
is decreasednly whenit broadcastagene.Sincetherobot’s
rate of sendinggeness proportionalto its enegy level and
decrementsccurwith eachsend therateof broadcastingle-
caysexponentiallyover thetime from its mostrecentvisit to
thelight. The morefrequentlya robotreacheghelight, the
higher its enegy level is likely to be at ary instant(up to
the saturatiorpoint definedby the maximalallowedenegy).

The enepgy level thus approximatesa leaky integral of the
robot’s performancetits task(i.e., thefrequeng with which
it reachedhe light). Figure4 providesan overview of how
the reproductve enegy levels are maintainedn our experi-
mentsandhow the PGTA s integratedwith therobots’other
behaiors.

defi ne enbodi ed_evol ve
initialize_genes[]
energy = m n_energy
repeat forever
if (excited?)
send( genes[ randon{num genes)] + mutati on)
if (receptive? and received?)

genes[i ndexof (recei ved)] = val of (recei ved)
do_t ask_speci fi c_behavi or
energy = limt(energy + reward - penalty)
endr epeat
enddef i ne

Figure4: Pseudocodef controlprogramthatimplementghe
ProbabilisticGeneTransferAlgorithm (PGTA). This codeis
run on every robot. No methodsfor synchronizingor coor
dinatingtherobots,nor ary centralizecelementsareusedin
thePGTA. Thepredicategxcited?andreceptive? areprob-
abilistic functionsof energy. sendtakesa genevalue and
broadcast# onlocalinfrared(wrappedwith genelocus).re-
ceived?is trueif any generecevedoninfrared.indexof and
valueof returnthe locusandvalue of received gene,respec-
tively. limit boundsthe enegy value betweenmin_energy
andmax_energy. random returnsanintegerin the rangeof
its argument. task specificbehaviour includesmonitoring
performanceatthetaskandsettingthe valuesof reward and
penalty. In our phototaxisexperimentsmin_enermy is 10;
max_energy is 255. excited? returnstrue if energy > ran-
dom(maxenemy), false otherwise;receptie returnstrue
if enegy < random(max_energy), false otherwise. Each
gene,genes[1..4]is aweightvaluefor the network. initial-
ize genessetsall genesto 0. mutation returns{0,1,—1}
with uniform probability task_specificbehavior includes
readingsensowralues,updatingnetwork outputs settingmo-
tor speeds/directiorsccordinglymonitoringsensoreadings
andperformingrandomturnif robotappearso bestuck,and
monitoringfor arrival atthe beacon.reward is setto 127, if
therobotdetectsghe beacon0 otherwise andpenalty is set
to 1 whenerertherobotbroadcasta gene 0 otherwise.

4.4 Experimental Results

Figure5 shavsthefrequeng with whichthelight is success-
fully reachedby the robot populationover time in eachof
threeexperiments.The main experimentevolvesthe neural-
network weightsto performthelight-seekingask. Theinitial
conditionof the networksin the evolution experimentis that
all weightshave a valueof zero(this configurationproduces
no outputto themotorsandprovidesa neutralstartingpoint).
The othertwo experimentsare controlswherethe robotsdo
notevolve;in onecaseherobots'weightsarerandonvalues,



andin the otherthe robotsuseweightsof a hand-designed
solution. As Figure5 shaws, the two controlsshav a broad
rangeof possibleperformancdevels andprovide usefulref-
erencesgainswhichto judgethe successf thetrialswhere
evolutiontakesplace.We seethatembodiedavolution allows
the populationof robotsto achiese performancefavorably
comparableo that of our hand-designedolution. Though
the robotslearnto approactthe light in a multi-robot envi-
ronment,they areableto performeffectively in isolation,as
well. Theseresultsprovide thefirst evidencethata fully de-
centralized,asynchronougvolutionary algorithm can oper
ateeffectively in a populationof physicalrobotsandprovide
high-quality control programs. Moreover, theseresultsare
achievedusinga crudemeasuref performancehatdoesnot
averageover mary trials. In fact,the enepgy level is anodd
representationf performancecomparedo the usualmean-
ing of “fitness” A robot’s enepgy level is not resetwhenthe
robotrecevesanew specificatiorduringareproductiorevent
andis thereforea measuref the performanceof the various
controllersthathave beenresidenton thatrobot.

e—>o embodied evolution
-=- hand-designed solution
random weights

Combined Hits/min
©

Time (min)

Figure 5: Averagehit ratesover time. Threecurvesshav
performanceof the robot populationusing hand-designed
(non-evolved), evolved, and random(non-evolved) network
weights. The datafrom the hand-designednd evolved ex-
perimentsare averagedover six runs, while the datafrom
therandom-netwrksexperimentareaveragedvertwo runs.
Eachrun lasts140 minutesand useseight robots. The ver-
tical axis representshe averagerate (in hits per minute) at
whichrobotsreachthelight. A timewindow of 20 minutesis
usedto computetheinstantaneousit ratefor eachdatapoint
onthe graph(hencethefirst datapointsappeaiat Time = 20
minutes).Errorbarsontheevolvedrun,shavn every 10 min-
utes,showv +/- one standarddeviation. Thoughthe evolved
solutionsbegin with network weightsof zero,we seethatthe
robotsachieze anaverageperformancef four hits perminute
within thefirst twenty minutesof the experimentandeventu-
ally meetthe hand-huilt hit rate.

Despiteits minimal structuretheartificial neural-netwrk
controlarchitecturaisedin therobotsallows a surprisingva-
riety of solutionsto be discoveredby the evolutionary pro-

cess.Interestingly the bestevolved solutionsexhibit behar-
iors that are qualitatively differentfrom our hand-designed
solution; evolution appearsto favor a “looping” solution,
whereaswith our hand-designedolution, the robot “swag-
gers”to thelight, asshowvn in Figure6. Thereasondor this
arenotknown andwe intendto addresshisin futurework.
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Hand-Designed Swagger Behavior
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Figure6: Trajectorief light-seekingsolutions.

Evolved Looping Behavior

5 Future Work and Conclusions

5.1 Future Work

Thereexist anumberof controlexperimentghatwill helpus
map the parametespaceof the PGTA. Throughthesecon-
trols, we expectto refinethe PGTA andunderstananorepre-
ciselythedynamicsf thealgorithmandthesettingghatpro-
vide themostrobustoperation.For example,simulationsug-
gestghatgoodsolutionsarenotstablein thepopulationf we
remove therobots’ability to resistthe reproductve attempts
of others.Theresistancenodelwe use while effective, is not
known to be optimal. Otherparametersve will investigate
includethe ratesat which a robot’s enepy is increasedand
decreasedasit reacheghe light and attemptsreproduction,
respectiely. We arein the procesf developingmorecom-
plex taskernvironmentsandcontrol architecturegor our ex-
perimentsheginningwith arecurrentversionof the network
architecturghatwill operateon raw sensolinputs. Though
thephototaxigaskdescribedn thisreportis simpleanddoes
not to involve explicit robotinteraction,the transpareng of
this domainallows us to investigatethe strongimplicit in-
teractive forceswithin the EE approach. For example,the
reproductve procesandphysicalrobot-to-robointerference
aretwo typesof interactionthatwe arecurrentlyinvestigating
beforemoving to amorecomple task.

Although the performanceof the looping behaior (dis-
coveredby evolution) appearslightly moreeffectivethanthe
(hand-huilt) swaggerbehaior, this resultis not statistically
significantwith thedatacollectedo-date.If thisresultshould
prove reliable, one questionwe hopeto answeris why the
looping,which seemdessefficient,is moreeffective thanthe
swagger One hypothesiss that the looping behaior over



comesthe physicalinterferencecausedy the otherrobotsin
the pen more efficiently than doesour hand-designedolu-
tion. Anotherhypothesiss thatloopingis morerobustto the
inevitable hardware varianceghat exist betweernthe robots.
Or, perhapswe will find the causds moremundane.

As stated,a long-termgoal of distributed roboticsis a
methodfor the automaticdiscovery of problemdecomposi
tion andbalancinglocal autonomywith group coordination.
By employing a large numberof robotstogetherin the task
ervironmentandallowing themto evolve interactve beha-
iors, we avoid introducingpreconceptionabouthow a prob-
lem shouldbe decomposedhow mary robotsshouldbe as-
signedto eachtask/sub-taskgr how mary groups/sub-groups
will be needed.Potentially we allow the robotsto discover
appropriatavorking groupsandinteractve behaiorsthatre-
flect the natureandstructureof the taskat hand. Achieving
this will requirethatwe addressnary critical issues:credit
assignmentthe balanceof cooperatiorandcompetition,ho-
mogeneityandheterogeneityencapsulatioandmodularity

5.2 Conclusions

Embodiedevolution is a new methodologyfor evolutionary
robotics. EE usesa populationof robots that evolve to-

getherwhile situatedin the taskernvironment. The adaptve
mechanismis distributed in the populationusing robot-to-
robot reproductionthat is carried out autonomoushby the
robots.Evolutionaryadaptations seamlesslyntegratedwith

the robot’s taskbehaior. Our experimentsin EE have em-
ployeda populationof eightrobotsthataresuppliedcontinu-
ouspowervia anelectrifiedfloor. We have developedanevo-

lutionaryalgorithmthatoperatesia theprobabilistictransfer
of geneticinformation betweenrobotson local-rangecom-
munication. This PGTA is entirely distributedandis robust
in waysthatmale it effective for implementatiorin a popu-
lation of robots.

EE providesa numberof opportunities. Firstly, EE en-
ablesthe studyof the effectsof integratingreproductiorwith
otherautonomousehaiorsinto realrobotsin a mannerthat
haspreviously only beenpossiblein simulatedALife experi-
ments. Secondly EE offers advantagesver other ER meth-
ods: specifically speed-upn time by parallelizingevalua-
tions, andthe eliminationof transferencgroblems sinceall
evaluationsare carriedout on real robots. Thirdly, EE pro-
videsa substratdor future researctto investigatecollective
roboticsbehaiors. However, EE alsointroducessomecom-
plicationsfrom which establishedER methodsdo not suf-
fer; for example,becauseave do not usea centralizedmech-
anism,the collectionof experimentaldatais mademoredif-
ficult. Also, becauseeproductionin EE is baseduponthe
principle of locality, EE is susceptibleo failureif therobots
becomephysically andthereforereproductvely, isolated.Fi-
nally, thoughembodiedavolution appeargarticularlysuited
to teamtasks,the precisemanneilin which EE shouldbe ap-
plied to teamevolution is unclear—reproductiormay inter-
ferewith taskbehaior.

Ourexperimentgprovidethefirst proof-of-conceptor em-
bodiedevolution. We have successfullyappliedEE to a sim-
ple phototaxistask. The neural-netwrk controlarchitecture,
thoughminimal, hasa non-trivial searchspaceandprovides
surprisinglynovel solutionsfor phototaxis.Resultsshaov so-
lutions evolved with EE to performcomparablyto our best
hand-designedolutions. Future experimentswill provide
greaterclarity on the advantagesand difficulties of the EE
method.
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