Chapter 8

Robot Control

To the uninitiated, the term “robot” conjures up images of a self-contained intelligent
machine that completes tasks and makes decisions about its environment. Unfortu-
nately, technology has not quite caught up to society’s far seeing prophets. The 6.270
robots that you are constructing are capable of fulfilling some of the requirements
mentioned above, given some clever programming and some manner of sensors with
the environment. The topic of control deals with how the robot is programmed to
allow it to deal intelligently with the immediate environment.

8.1 Types of Control

The most obvious way of controlling a robot is to give it tasks to do, without any
concern about the environment around it. This form of control is called open loop
and consists of a simple signal being given and an action being carried out. The robot
does not make any sort of “check” as to whether the correct action was completed,
rather it mechanically follows the steps in a prescribed pattern. Closed loop control
involves giving the robot feedback on the task as it progresses to allow it to ascertain
whether the task is actually being completed. Consider the example of a car: open
loop control would consist of placing a brick on the accelerator pedal and locking the
steering wheel, whereas closed loop control may have a driver making corrections for
disturbances like curving roads and stop signs (not to mention other vehicles).

8.2 Open Loop Control

A control flow diagram of open loop control consists of some signal (“turn left”) being
interpreted by the microprocessor (“6811”) to drive some actuators (“motors”) and
create some output (“moved robot”).
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Figure 8.1: Open loop control diagram

Note that there is no link between the output and the moved robot: the micropro-
cessor has no idea of where the robot actually is. This is often what leads to robots
getting caught doing silly things at inopportune times. Pattern followers — robots
that only use open loop control — often work extremely well in situations that vary
little and are readily reproducible. However, the 6.270 tables (during a contest) fit
neither of these specifications.

There are a number of reasons that open loop control is used rarely in the real
world. The biggest one is the lack of robustness: any small change in the robot or
the environment is not corrected for. Consider our hapless automobile, in its current
incarnation it is not capable of negotiating turns. Let’s create a slightly smarter
open loop controller — a 6.270 board hooked up to the relevant control, perhaps the
accelerator pedal, brake, and steering wheel. Sending it to the store to pick up some
milk would consist of programming a series of commands that negotiate the path.

backwards for 10 seconds (exit driveway)

left for 5 seconds (get parallel to the road)

straight for 30 seconds (to the stop sign)

wait for 5 seconds (a pretense of waiting for the route to be clear)

left for 5 seconds (pull into parking space)

There are several major problems apparent in this fictional trip, even ignoring the
possibility of other vehicles on the road. If the tire pressure was low (or the wheels
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were of a different size than expected) or the fuel was low (or batteries were at low
power) the vehicle would start each of the tasks out of the correct position. The left
hand turn may place it onto the lawn instead of the street. Even disregarding the fact
that the 6.270 board is too short to see over the dashboard, our car-robot is running
a blind pattern.

6.270 contest robots run into similar problems when they are controlled in an open
loop manner: when they physically stray from the location the microprocessor thinks
they are in, they are lost. Changes in the friction of the gear mechanisms, or friction
with the table can seriously affect the performance of the robot. Timing for the open
loop control will vary with battery power. The frictional and electrical variable will
always be different, so the timings will be different for every instance.

However, there are some instances when open loop control is useful. When the
robot has no way of sensing how far it is from the desired position, relying on open
loop control is the only recourse. For the novice programmer, open loop algorithms
are much easier to construct than their closed loop counterparts, and are all that is
required for actions which change little from run to run. It might be good to try
writing a simple open loop program to determine its limitations before going on to
more advanced control.

8.3 Closed Loop Control

Much research has been done on how to “properly” control vehicles and processes
using the least power and getting a close as possible to the desired orientation. For
this class, the bulk of the knowledge gained in 16.30 and 6.302 is dismissed; the
microprocessor allows greater flexibility for the fledgling controls programmer.

The only change to the control flow diagram is the addition of a feedback signal
from a sensor shown in Figure 8.2.

The sensor is used to provide information on the current orientation of the robot.
This information is used to modify the control input to the robot to correct for the
errors in orientation.

A concrete example is a wall following algorithm. The ideal sensors to use are the
bend sensors which provide (if interpreted cleverly) the distance the robot is away
from the wall. We could place one of these sensors (if we had them — unfortunately,
we have not been able to acquire any this year) on the front right side of a robot and
bend it slightly so that it always bends in the same direction.

Now if the robot is too close to the wall, we would like it to move away; if it is too
far it needs to move closer. Perhaps there is also some ideal range of distances from
the wall in which the robot will merrily travel straight. The code to implement this
algorithm is fairly straightforward, of more concern is how to determine the necessary
values: CLOSE and FAR. In most cases, trial and error is easiest, placing the robot
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Figure 8.2: Closed loop control diagram
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Figure 8.3: Robot with a Bend Sensor
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Figure 8.4: Robot moving

the correct distance from the wall, checking the sensor value, then selecting some
values nearby for CLOSE and FAR. If the value of the bend sensor drops below
the FAR threshold, the robot needs to move closer to the wall, perhaps by running
the left motors slightly faster than the right motors. The opposite should occur if
the sensor value climbs above CLOSE. If the value is in the “dead zone,” the robot
should continue straight.

There is one problem that we’ve overlooked in creating this wall following algo-
rithm. The robot does not simply translate towards the wall when asked to move
closer; it also rotates. This can lead to the robot jamming into the wall by over-
rotating shown in Figure 8.5. The reason that this particular configuration can jam
is that we have no feedback as to the orientation of the robot relative to the wall.
It may be wiser to measure no only the distance from the wall, but also the angle
relative to the wall. Placing another sensor on the back end of the robot is sufficient.
Now the distance from the wall can be determined by averaging the two values from
the sensors and the orientation of the robot is some function of the difference of the
two sensor values. The angle of the robot with respect to the wall can be used to
determine if it is running towards or away from the wall.

Note also that the code needs to be modified to handle this extra information
coming in. One easy way is to have three steps to wall following:
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Figure 8.5: Jammed robot
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Figure 8.6: Robot with two bend sensors
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e Approach the wall with the front sensor until the front sensor is detected.

e Align the robot so that it is parallel to the wall. This step may be very oscillatory
where the robot is moving back and forth towards and away from the wall. This
is a typical problem in control if the system is not designed carefully.

e Once the machine is aligned it should proceed forward while correcting small
deviations in alignment.

A very simple way of implementing this is through a group of IF-THEN state-
ments. Since each sensor can be in three possible states: not touching, too close, just
right, there will be a total of nine possible states. Try to make simple code using nine
if statements to drive your machine along a wall.

These are only suggestions, however, since many people come up with much more
clever ways of following walls. You may wish to use previous information, e.g., the
angle with respect to the wall, to add more intelligence to your code.

8.4 Closed Loop Control with Coarser Sensors

The bend sensors available in the 6.270 kit are relatively sensitive analog devices;
the values correspond to the degree of bend along the length of the strip. Other
available sensors are digital in nature, either because of inherent digital attributes
(touch switches) or because of the manner in which they are used (breakbeam sensors).

Touch switches are very useful in situations where the optimal orientation either
easily obtainable, or only required for a short time. For instance, a gate that needs
to be raised to a specific height could be stopped by a touch sensor limit switch. The
exact height of the gate is not of too much importance.

Reflectance sensors are inherently analog, however the thresholding done on them
to determine the surface color renders them virtually digital. Most code is not con-
cerned with the actual shade of the surface, only whether it is white or some other
color (usually black). Setting the values that are considered white and black is a sim-
ilar process to determining how close or far the robot should travel from the wall; the
robot samples values of table surface (both white and white), places them in persis-
tent variable and uses these for reference during the run. The difference is that these
values are much more suspect to outside disturbance. Let’s find out what problems
may arise.

8.4.1 Analog Sensor Problems

Sensors are susceptible to a host of problems, but the somewhat controlled run situ-
ations of the 6.270 contest help to compensate for these errors. Below is a diagram
of a few of the different sorts of poor data that can be read off of a sensor.
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Figure 8.7: Sensor Problems that can arise.
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The first problem, that of glitchy data is often inherent in the sensor itself, and
must be fixed in software. Throwing out values that are out of the usable range, or
looking for unlikely transitions (for instance, the robot suddenly moving too far away
from the wall) is a good way to filter out unusable data.

Noisy data also caused by the sensor itself, perhaps due to oversensitivity or due
to spurious input from the sensor stimuli. Time averaging the values often leads to
cleaner data, and it is reasonable given how much faster the robot electronics run
than the mechanical systems.

Drifting data can be caused by sensors retaining some sort of memory. Slowly
changing light sources may interfere with color tracking if the sensor is not well
shielded. An option is to have the robot capable of changing it’s own threshold values
during the course of a run. If the robot know it is not touching anything, it could
use that value as the unflexed reference for the bend sensor. Or it could recalibrate
colors based on what values are sensed over known surfaces. The important thing to
note here is that the robot must be certain of being on a calibration surface before
changing the threshold values.

Incorrect range is seldom a problem, because the ranges are easy to change in
software. If the values are simply too small to show up on the analog robot input
it may be necessary to change the input signal from the sensor itself. In the case
of a resistive type sensors, simply placing a resistor in parallel or series as necessary
can move and amplify the input signal from the sensor. In the case of other types
of sensors, more complex amplification electronics may be required. The expansion
board on the robot is suitable for mounting an op-amp or transistor to amplify small
signals.

8.5 Feed Forward Control

If it is the case that we know some of the disturbances that will appear to the robot,
we can correct for them before they affect performance. Consider dropping battery
power: if we had some way to sense the energy left in the battery, we could compensate
when it was low by having routines run for longer periods of time (since the robot
will be moving slower). If the drive train of the robot was changed late in the course
(an unwise thing to do), the distance traveled in the same time may change. Rather
than changing all of the values, perhaps a few key ones could be changed to allow for
a correction factor.

However, feed forward control is not especially useful unless there is no time to
correct for the known disturbance beforehand.
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8.6 Sensor Integration

There are three major concerns that must be addressed when integrating sensors to
a robot: modularity, structural integrity and ease of disassembly.

Modularity refers to how easy it is to move the mounting location of a sensor. If
several special LEGO bricks are required to place the sensor in the correct position,
it will be difficult to experiment with optimal sensor placement.

Structural integrity is necessary to prevent the sensor from falling oftf the robot
under contest conditions. Precariously mounted bump sensors may knock themselves
loose and render themselves useless if not well mounted. Try running the robot over
a few bumps and into a few walls to judge the integrity of the sensor mounts.

When a small gear deep in the heart of the robot manages to strip itself, it is
helpful to have the entire robot easily fixable. This ideology extends to sensors as
well; they are more susceptible to failure than most LEGO pieces.

Finally, please realize that writing control programs for an autonomous robot is
no small task. One way to both get an idea of the complexity of the task and some
handle on how to solve it, is to play out the code written for the robot. Have one
person reading the code, making decisions based on sensor values. Another person
reads the current sensor values and a third person (blind-folded perhaps) actuates
the robot based on the output of the code. Note that this is analogous to the control
flow diagram described early. Though it sounds simplistic, it is useful to have an idea
of how limited the robot really is, and how dependent it is on intelligently written
control software.

In the past, most successful robots have been mechanically completed early in
the course and had over a week devoted solely to creating robust, well written code
to control their behavior. Many mechanical deficiencies can be overcome in clever
software, but the converse is not necessarily true.



