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mc375: intro to robotics
intro to robot control topics.
• autonomy
• problem solving
• modeling

– knowledge
– representation

• control architectures
• deliberative control
• reactive control
• hybrid control
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autonomy.

• to be truly autonomous, it is not enough
for a system simply to establish direct
numerical relations between sensor inputs
and effector outputs

• a system must be able to accomplish goals
• a system must be able to solve problems
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problem solving.
• the ability to achieve goals
• need to represent problem space

– which contains goals
– and intermediate states

• there is always a trade-off between
generality and efficiency

• more specialized  more efficient
• more generalized  less efficient
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problem solving:
example.

• GPS = General Problem Solver [Newell and Simon 1963]

• Means-Ends analysis
operator preconditions results

PUSH(obj,loc) at(robot,obj)∧∧∧∧large(obj)∧∧∧∧ at(obj,loc)∧∧∧∧
clear(obj)∧∧∧∧armempty() at(robot,loc)

CARRY(obj,loc) at(robot,obj)∧∧∧∧small(obj) at(obj,loc)∧∧∧∧
at(robot,loc)

WALK(loc) none at(robot,loc)

PICKUP(obj) at(robot,obj) holding(obj)

PUTDOWN(obj) holding(obj) ¬¬¬¬holding(obj)

PLACE(obj1,obj2) at(robot,obj2)∧∧∧∧holding(obj1) on(obj1,obj2)
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modeling.
• world modeling
• the way in which domain knowledge is

embedded into a control system
• information about the environment stored

internally; internal representation
• e.g., maze -- robot stores a “map” of the

maze “in its head”

2/26/01 13:51 6course notes adapted from:
Introduction to Robotics ©  Maja Mataric, USC

Autonomous Systems ©  Andreas Birk, VUB

modeling:
knowledge.

• information in a context
• organized so it can be readily applied
• understanding, awareness or familiarity

acquired through education or experience
• physical structures which have

correlations with aspects of the
environment and thus have a predictive
power for the system
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knowledge:
philosophy.

• two branches of philosophy deal
directly with knowledge

• epistemology
– the study or theory of the nature of

knowledge, especially with respect to its
limits and validity

• ontology
– a particular theory about the nature of

being or the kinds of existents
2/26/01 13:51 8course notes adapted from:

Introduction to Robotics ©  Maja Mataric, USC
Autonomous Systems ©  Andreas Birk, VUB

knowledge:
memory.

• divided into 2 categories according to
duration

• long term memory (LTM)
– persistent

• short term memory (STM)
– transitory
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knowledge:
short-term memory.

• used as a buffer to store only recent sensory data
• data used by only one behavior
• examples:

– grids : vary in resolution/area, shape, uniformity
– avoid-past : avoid recently visited places to encourage

exploration of novel areas
– wall-memory : store past sensory readings to increase

correctness of wall detection
– instantaneous obstacle map : store detected obstacles projected

onto the ground plane
– vector field histogram : stores probabilistic sensor model in a

form that is fast to update and use
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knowledge:
long-term memory.

• metric maps use absolute measurements and coordinate
systems

• qualitative maps use landmarks and their relationships
• examples:

– a priori map representations : utilize domain knowledge, many
sources exist and can be combined; may contain errors and/or
become outdated; frame of reference may be incompatible

– internalized plans : pre-compile a map into a gradient vector
field for a specific goal

– Markov models : graph representation which can be augmented
with probabilities for each action associated with each sensed
state
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knowledge:
representation.

• must have a relationship to the environment
– temporal (duration)
– spatial

• must enable predictive power
– looking ahead
– but if inaccurate, it can deceive the system
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knowledge:
representation, 2.

• explicit
– symbolic
– discrete
– manipulable
– typical of traditional AI

• implicit
– non-explicit
– reconstructable

• tacit
– embedded within the system
– non-reconstructable
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knowledge:
symbolic representations.

• require symbolic grounding
– connecting the meaning (semantics) of an

arbitrary symbol to the real world
• difficult because:

– sensors provide signals, not symbols
– symbols are often defined with other

symbols (circular, recursive)
– requires interaction with the world
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representation:
environment.

• the world is
– noisy

• states are
– totally vs partially vs un- observable
– discrete vs continuous
– static vs dynamic

• other factors
– speed of sensors
– response time of effectors
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representation:
components.

• spatial
– metric or topological maps

• objects
– instances of detectable things in the world

• actions
– outcomes of specific actions on the self and the environment

• self/ego
– stored proprioception (sensing internal state), self-limitations

• intentional
– goals, intended actions, plans

• symbolic
– abstract encoding of state/information
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representation:
maps.

• euclidean map
– represents each point in space according

to its metric distance to all other points
in the space

• topological map
– represents locations and their

connections, i.e., how/if they can be
reached from one another; but does not
contain exact metrics
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representation:
state.

• there is a difference between state
and representation !

• state
– status of the system itself

• representation
– arbitrary information that may be

contained in the system
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representation:
graphs.

• graph G = (V,E)
• many search models

– examples: depth-first, breadth-first

C

B

D

A

E

F
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representation:
types of knowledge.

• spatial world knowledge
– navigable surroundings and their structure

• object knowledge
– categories or instances of things in the world

• perceptual knowledge
– how to sense

• behavioral knowledge
– how to (re)act

• ego knowledge
– self-limits and capabilities

• intentional knowledge
– goals
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representation:
Markov models.

• a Markov chain is a probability model
for a multi-state system

• a probability is associated with each
state transition in the system

• if you are currently in state i, then
there is a probability      that you will
be in state j in the next time step

pij
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representation:
Markov example.

current

state next state

1111 2222 3333 4444 5555

1111 0 .3 0 .5 .2

2222 .5 0 0 .5 0

3333 .4 0 0 .4 .2

4444 1 0 0 0 0

5555 0 0 .1 0 .9
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representation:
cognitive maps.

• term comes from animal navigation
literature

• means of both previous experience
storage and its use for action

• used by animals that forage and home
• may be simple collections of vectors
• support a wide range of behaviors
• based on strong biological evidence
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representation:
cognitive maps in rats.

• rats are extremely well adapted for
navigation

• integrate various environmental cues
(visual, auditory, scent, magnetic)

• populations of cells in the
hippocampus encode specific places in
the world

• cells are activated through movement
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architecture.

• same usage as in computer architecture
• set of principles for designing

computers out of well-understood
building blocks
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architecture:
overview, 1.

• a control architecture provides a set
of principles for organizing a control
system
– provides structure
– provides constraints

• refers to software control  level, not
hardware!
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architecture:
overview, 2.

• implemented in a programming language
• a Turing-universal language

– sequencing
– conditional branching
– iteration

• theoretically, any language could be
implemented on any architecture
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architecture:
overview, 3.

• don’t confuse “programming language”
with “robot architecture”

• research has shown that even newly
invented “architectures” continually
fall into one of these four classes

• architectures guide how programs are
structured
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architecture:
overview, 4.

• no architecture can compute more or
less than any other

• since they are all implemented in
Turing-universal programming
languages

• and all Turing-universal languages are
Turing equivalent
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architecture:
overview, 5.

• usually just by watching a robot in
action, you cannot tell which control
architecture is being used

• just as you cannot tell which language
was used to write a working program

• but this is less true with very
complex robot programs

2/26/01 13:51 30course notes adapted from:
Introduction to Robotics ©  Maja Mataric, USC

Autonomous Systems ©  Andreas Birk, VUB

architecture:
classes of robot control

architectures.
• deliberative

– look-ahead; think, plan, then act
• reactive

– no look-ahead; react!
• hybrid

– think slowly, react quickly
• behavior-based

– distribute thinking over acting
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architectures:
classes, 2.

• time scale: good way to distinguish control architectures
• reactive

– respond to real-time requirements of environment
• deliberative

– plan, so work on a longer time scale
• hybrid

– combine the two time scales, generally through a middle layer, so
also called three-layer architectures

• behavior-based
– bring the time scales together by distributing computation over

concurrent behavior models
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architecture:
criteria.

• support for parallelism
– the ability of the architecture to execute

parallel processes/behaviors at the same time
• hardware targetability

– how well the architecture can be mapped onto
real-robot sensors and effectors

– how well the computation can be mapped onto
real processing elements (i.e., microprocessors)
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architecture:
criteria, 2.

• run-time flexibility
– does the architecture allow run-time

adjustment and reconfiguration?
• modularity

– how does the architecture address
encapsulation of control?

– how does it treat abstraction?
– does it allow many levels?

• e.g., feedback loops, primitives, agents
– does it allow re-use of software?
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architecture:
criteria, 3.

• niche targetability
– how well does the architecture allow the robot

to deal with its environment?
• robustness

– how well does the architecture perform if
individual components fail?

– how well does it enable and facilitate writing
controllers capable of fault tolerance?
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architecture:
criteria, 4.

• ease of use
– how easy to use and accessible is the architecture?
– are there programming tools and expertise?

• performance
– how well does the robot perform using the

architecture?
– does it act in real-time?
– does it get the job done?
– is it failure-prone?
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architecture:
representation.

• strong relationship between class of
control architecture and
representation methodology used

• time to build
• time to use
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architecture:
representation, 2.

• role varies in different architectures:
– deliberative: extensive
– reactive: have none
– hybrid: use it
– behavior-based: avoid it or distribute it
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architecture:
topics.

• today:
– deliberative
– reactive
– hybrid

• after break:
– behavior-based
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deliberative control.

• classical control architecture (first
to be tried)

• first used in AI to reason about
actions in non-physical domains (like
chess)

• natural to use this in robotics at first
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deliberative control:
Shakey.

• 1960’s at SRI (Stanford Research
Institute)

• state-of-the-art machine vision used
to process visual information

• used classical planner (STRIPS)
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deliberative control:
planning.

• looking ahead, searching for what to do
next

• the goal is a state
• entire state space is enumerated and

searched, from current state to goal state
– different paths are tried
– optimal path is the one we want to use
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deliberative control:
SPA.

• planner-based architecture
• involves 3 steps:

(1) sensing (S)
(2) planning (P)
(3) acting (A)

• SPA has serious drawbacks...
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deliberative control:
SPA problem 1: time scale.

• it may (probably) take a very long
time to search robot’s state space

• real robots may have input from
multiple sensors

• hard to enumerate all possible states
• there’s too much information!
• generating a plan is slow
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deliberative control:
SPA problem 2: space.

• a lot of memory is needed to
store/search robot’s large state
space

• representation must be robust to
store all the information properly

• generated plan can be large
• however this is less of a problem than

time
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deliberative control:
SPA problem 3: information.

• planner assumes representation is
accurate and up-to-date

• not necessarily true!
• representation must be constantly

updated and checked for accuracy,
consistencies

• too little information!
• and/or inaccurate information!
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deliberative control:
SPA problem 4: use of plans.

• resulting plan is only useful if
– environment does not change during planning
– environment does not change during execution

in such a way as to invalidate the plan
– representation was accurate enough that plan

will actually work
– robot’s effectors are accurate enough so that

predicted and actual action results are the
same
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deliberative control:
summary of problems.

• require search and planning, which are
slow

• encourage open-loop execution, which
is limiting and dangerous

• NOTE: if planning were not slow, then
execution could be closed-loop since
re-planning could occur based on
feedback
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deliberative control:
after deliberation.

• real robot practitioners objected
strongly to SPA

• in early/mid 1980’s alternatives were
proposed:
– reactive systems
– hybrid systems
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deliberative control:
role of deliberation.

• deliberative architectures no longer
used on real robots, after “revolution”
in mid 1980’s

• however, deliberation is still used in
other areas of AI, such as chess and
other static domains
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deliberative control:
expansion.

• in robotics, SPA has been expanded
to overcome previous issues:
– since search/planning is slow, save/cache

important and/or urgent decisions
– since open-loop execution is bad, use

closed-loop feedback and be ready to
respond or re-plan when a plan fails
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reactive control.

• operate on a short time scale
• does not look ahead
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reactive control:
overview, 1.

• reactive control is based on a tight loop
connecting the robot’s sensors with its
effectors

• purely reactive controllers do not use any
internal representation; they merely react to
the current sensory information

• use a direct mapping between sensor and
effectors; minimal state information (if any)
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reactive control:
overview, 2.

• collection of rules that map situations
to actions

• simplest form:
– divides perceptual world into a set of

mutually exclusive situations
– recognize which situation we are in
– react to it
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reactive control:
overview, 3.

• usually too hard to define mutually
exclusive situations
– what if multiple sensors are involved?
– robot’s entire sensory space could be

very large!
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reactive control:
overview, 4.

• mapping from sensory input to actions
is done during system design time, not
at run-time

• often humans can filter/shrink the
entire sensory space
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reactive control:
arbitration.

• deciding between two or more different
possible actions or behaviors

• can be done based on:
– fixed priority hierarchy
– dynamic hierarchy
– learning
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reactive control:
universal plans.

• suppose all possible plans for all possible actions can be
generated in advance

• and an optimal reaction for each situation can be
identified

• this is a universal plan
• also called a complete mapping
• reactive. planning is done at compile-time, not run-time.
• but not viable, because:

– world must be deterministic
– world must not change
– goals must not change
– world is too complex (state space is too large)
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reactive control:
situated automata.

• formal notion of finite state machines
(FSM)
– inputs connected to sensors
– outputs connected to effectors

• “situated” = interacting with a
complex world

• used to create reactive principled
control systems
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reactive control:
control with situated automata.

• two ways to construct
– manually

• e.g., subsumption architecture [Brooks 1986]
– pre-compiling a complete plan

• similar to universal plans, but in terms of
FSM circuitry

2/26/01 13:51 60course notes adapted from:
Introduction to Robotics ©  Maja Mataric, USC

Autonomous Systems ©  Andreas Birk, VUB

reactive control:
subsumption architecture.

• best known reactive control architecture
• Rod Brooks, MIT, 1985
• principles:

– systems are built from the bottom up
– components are task achieving actions/behaviors (not functional

modules)
– components can be executed in parallel
– components are organized in layers, from the bottom up
– lowest layers handle most basic tasks
– newly added components and layers exploit existing ones
– each component provides and does not disrupt tight coupling

between sensing and action
– no internal models (“the world is its own best model”)
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hybrid control.

• basic idea:
– use the best of both worlds (deliberative

and reactive)
– combine open-loop and closed-loop execution
– combine different time scales and

representations
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hybrid control:
organization.

• typically consists of three components:
(1) reactive layer
(2) planner
(3) integration layer to combine (1) and (2)

• often called three-layer architectures
• planner and reactive layers are

standard
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hybrid control:
the magic middle.

• middle / integration layer has to:
– compensate for limitations of both planning

and reactive layers
– reconcile different time scales of the other

two layers
– reconcile different representations of the

other two layers
– reconcile any contradictory commands

between the two
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hybrid control:
re-using plans.

• some frequently useful planned decisions
may need to be reused

• so to avoid planning, these can be stored
(cached) and looked up in the middle layer

• examples:
– intermediate-level actions (ILA’s): stored in

contingency tables
– macro operators: (small) plans compiled into

more general operators for future use
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hybrid control:
dynamic re-planning.

• reaction can influence planning
• important changes discovered by low-level

controller go back to planner; planner uses
them to re-plan

• planner is interrupted when an answer is
needed in real-time

• reactive controller stops, waits for new
plan
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hybrid control:
planner-driven reaction.

• planning can influence reaction
• important optimizations the planner

discovers are passed down to the
reactive controller

• planner’s suggestions are used if safe
and possible

• who has priority: reactor or planner?
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hybrid control:
strengths.

• deliberative planners
– rely heavily on world models
– can readily integrate world knowledge
– have broader perspective and scope

• reactive and behavior-based systems
– afford modular development
– provide real-time robust performance in

dynamic world
– provide for incremental growth
– tightly coupled to incoming sensory data
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hybrid control:
interaction of layers.

• interaction of layers
– hierarchical integration
– planning guides reaction
– coupled planning and reacting

• types of interaction
– selection: planning is viewed as configuration
– advising: planning is viewed as advice giving
– adaption: planning is viewed as adaption of

controller
– postponing: planning is viewed as least

commitment process
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hybrid control:
examples.

• there are many, many examples
• review of these could be someone’s

term project :)
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reading.

• Intro to Robotics (McKerrow), 2.9-
2.11 (1st course pack)

• Robotic Explorations, ch 8 (web)

• 2nd course pack will be at bookstore
this week (hopefully!)

• reading for spring break
• other readings on web (rest of semester)


