
1

4/21/2001 19:20 1course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

mc375: intro to robotics
learning.

4/21/2001 19:20 2course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

adaptation vs learning.
• learning produces changes within an

organism that, over time, enables it to
perform more effectively within its
environment

• adaptation in learning through making
adjustments in order to be more attuned
to its environment.
– different time scales: acclimatization (slow) vs

homeostatis (rapid)
– different levels: genotypic vs phenotypic

4/21/2001 19:20 3course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

types of adaptation.

• behavioral -- behaviors are adjusted
relative to each other

• evolutionary -- descendents are based on
ancestor’s performance over long time
scales

• sensory -- sensors become more attuned to
the environment

• learning as adaptation -- anything else that
results in a more ecologically fit agent

4/21/2001 19:20 4course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

importance of learning.

• learning is more than just adaptation
• learning, the ability to improve one’s

performance over time, is considered the
main hallmark of intelligence, and the
greatest challenge of AI

• learning is particularly difficult to achieve
in physical robots, for all the reasons that
make intelligent behavior in the physical
world difficult

4/21/2001 19:20 5course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

what learning enables.

• introducing new knowledge (facts,
behaviors, rules) into the system

• generalizing concepts
• specializing concepts
• reorganizing information
• creating or discovering new concepts
• creating explanations
• reusing past experiences

4/21/2001 19:20 6course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

why learn in robots?

• providing the robot with the ability to
adapt to changes in its task and/or
environment

• providing the robot with the ability to
improve performance

• providing the robot designer with a way of
automating the design and/or programming
of the robot

2

4/21/2001 19:20 7course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

what can be done?
• automatically design the robot’s body
• automatically design a physical network for

its processor
• automatically generate its behaviors
• automatically store and re-use its previous

executed plans
• automatically improve the way its layers

interact
• automatically tune the parameters within

the behaviors and many more ...
4/21/2001 19:20 8course notes adapted from:

Introduction to Robotics © Maja Mataric, USC
Autonomous Systems © Andreas Birk, VUB

what has been done?
• parts of robot bodies, brains (i.e.,

processors), and programs have been
automatically generated (i.e., learned)

• robots given initial programs have used
experience and trial & error to improve the
programs (from parameter tuning to
switching entire behaviors)

• robots programmed for a task have
adapted to changes in the environment
(e.g., new obstacles, new maps, heavier
loads, new goals)

4/21/2001 19:20 9course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

challenges in robots

• situatedness in the world: noise, occlusion,
dynamics, hard to model, etc.

• real time constraints: slow learners die
easily in the real world

• simultaneous and multi-modal: multiple
goals & tasks, need to walk and talk (not
just either or)

4/21/2001 19:20 10course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

challenges in learning.

• credit assignment: who is to credit/blame
for outcome?

• saliency: what is relevant right now?
• new term: when should a new

concept/representation be created?
• indexing: how to organize the memory?
• utility: what should be forgotten?

4/21/2001 19:20 11course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

levels of learning.

• within a behavior
– suitable responses
– suitable stimulus
– suitable behavioral function mapping
– magnitude of response (gain)
– whole new behavior

• within a behavior assemblage
– suitable set of behaviors
– relative strengths
– suitable coordination function

4/21/2001 19:20 12course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

learning methods.
• reinforcement learning
• neural network (connectionist) learning
• evolutionary learning
• co-evolutionary learning
• learning from experience

– memory-based
– case-based

• inductive learning
• explanation-based learning
• multistrategy learning

3

4/21/2001 19:20 13course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

types of learning.

• numeric or symbolic
– numeric: manipulate numeric functions
– symbolic: manipulate symbolic representations

• inductive or deductive
– inductive: generalize from examples
– deductive: optimize what is known

• continuous or batch
– continuous: during interaction with the world
– batch: after interaction, all at once

4/21/2001 19:20 14course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

some terminology.

• reward/punishment
– positive/negative feedback

• cost function/performance metric
– scalar (usually) goodness measure

• induction
– generating a function (a hypothesis) that

approximates the observed examples
• teacher/critic

– provides feedback

4/21/2001 19:20 15course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

more terminology.

• plant/model
– system/agent that we want to train

• convergence
– reaching a desired (or steady) state

• credit assignment problem
– who should get the credit/blame?
– hard to tell over time
– hard to tell in multi-robot systems

4/21/2001 19:20 16course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

reinforcement learning (RL).
• currently the most popular approach to

learning on mobile robots
• inspired by conditioning in psychology
• Law of effect: applying a reward immediately

after the response increases its probability of
reoccurring while providing punishment after the
response will decrease the probability [Thorndike 1911]

• translated to robotics: some combinations of
stimuli (i.e., sensor readings and/or state) and
responses (i.e., actions/behaviors) are coupled
with subsequent reward in order to increase their
probability of future use

4/21/2001 19:20 17course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

reinforcement learning, cont.

• desirable responses of outcomes are
positively reinforced (rewarded) and thus
strengthened, while undesirable ones are
negatively reinforced (punished) and thus
weakened

• this very general notion can be translated
into a variety of specific reinforcement
learning algorithms

4/21/2001 19:20 18course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

challenges in RL.

• learning from delayed rewards: the
problem is difficult if the feedback is not
immediate

• credit assignment problem: when something
good or bad happens, what exact
state/condition-action/behavior should be
rewarded or punished?

• common approach: use the expected value
of exponentially weighted past/future
reinforcement

4

4/21/2001 19:20 19course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

RL algorithms.

• proscribe exact mathematical functions
that associate states/situations,
actions/behaviors, reinforcement and
various associated parameters

• some of these algorithms (Q-learning, TD
learning, etc.) have well-understood
convergence properties; they are
guaranteed to make the robot learn the
optimal solution

4/21/2001 19:20 20course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

optimality in learning.

• optimality depends on strong assumptions:
the robot must be given infinitely many
trials of each state/action combination,
must know what state it is in and what
action it has executed, and the world must
not change too quickly

• but: there is not enough time for infinite
trials, outcomes of actions are uncertain,
the world can change

• thus: optimality is impractical

4/21/2001 19:20 21course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

observability.

• the world to a robot is partially observable,
the robot does not know exactly what
state/situation it is in at all times

• learning algorithms have been developed
for partially observable environments, and
while they are more realistic, they require
even more time to converge

• in general, managing uncertainty in learning
is very hard

4/21/2001 19:20 22course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

unsupervised learning.
• RL is a form of unsupervised learning
• RL allows a robot to learn on its own, using

its own experiences (and some built-in
notions of desirable and undesirable
situations, associated with reward and
punishment)

• the designer can also provide
reinforcement (reward/punishment)
directly, to influence the robot

• the robot is never told what to do

4/21/2001 19:20 23course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

RL function and critic.

• RL systems contain a reinforcement
function, which determines when and how
much positive or negative reinforcement to
deliver to the robot

• the critic is the part of the RL system
which provides the reinforcement, i.e.,
executes the reinforcement function

4/21/2001 19:20 24course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

types of critic.

• the critic can be
– external: if the user provides the

reinforcement
– internal: if the system itself provides the

reinforcement
• in both cases the approach is unsupervised

in that the answer is never given explicitly
by the critic

5

4/21/2001 19:20 25course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

what can be RL learned?

• policy: the function that maps the
states/situations to actions/behaviors

• utility: the function that gives a value to
each state

• both of the above are learned relative to a
specific goal

• if the goal changes, so must the policy
and/or the utility function

4/21/2001 19:20 26course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

adaptive heuristic critic.

• example of an RL critic [Barto & Sutton]
• the process of learning what action to take

in what state (the policy) is separate from
learning the value of each state (the utility
function)

• both are based on trying different actions
in different states and observing the
outcomes over time

4/21/2001 19:20 27course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

Q learning.
• the most popular RL algorithm [Watkins 1980’s]

• a single utility Q-function is learned in order to
evaluate both actions and states

• shown to be superior to AHC
• Q values are stored in a table, usually
• updated at each step, using an update rule

Q(x,a) ← Q(x,a) + b(r + λE(y) - Q(x,a))
x = state r = reward
a = action λ = discount factor
b = learning rate E(y) = utility of the state y, computed as

 max(Q(y,a)) for all actions a

• guaranteed to converge to optimal, given infinite
trials

4/21/2001 19:20 28course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

supervised learning.

• requires the user to give the exact solution
to the robot in the form of the error
direction and magnitude

• thus, the user must know the exact
behavior for each situation

• this approach can take a very long time and
requires user/designer supervision, which
is not always desirable

4/21/2001 19:20 29course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

neural networks.

• hebbian learning (increase synaptic
strength along pathways associated
with stimulus and correct response)

• perceptron learning (delta rule or
back-propagation)

4/21/2001 19:20 30course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

NN’s are RL.

• in all NN’s, the goal is to minimize the
error between the network output and the
desired output

• achieved by adjusting the weights on the
network connections

• NN’s perform supervised RL with
immediate error feedback

6

4/21/2001 19:20 31course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

associative learning.

• learning new behaviors by associating
sensors and actions into rules

• example:
– 6-legged walking (Edinburgh)
– whisker sensors first, IR and light later
– 3 actions: left, right, ahead
– user provided feedback -- shaping
– learned avoidance, pushing, wall-following, light

seeking

4/21/2001 19:20 32course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

neural network examples.
• robot motion planning, articulation/manipulation
• control of complex plants: robots, aircraft
• control and coordination of multiple vehicles
• some domains and tasks lend themselves very

well to supervised NN learning
• the answer to any given situation is well known

and can be trained
• best example is robot motion planning for

articulation/manipulation; NN’s widely used for
learning inverse kinematics

4/21/2001 19:20 33course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

evolution.

4/21/2001 19:20 34course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

co-evolution.

4/21/2001 19:20 35course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

evolutionary methods.
• genetic/evolutionary approaches are based

on the evolutionary search metaphor
• states/situations and actions/behaviors

are represented as “genes”
• different combinations are tried in

different “individuals” in a “population”
• individuals with the highest “fitness”, that

perform the best, are kept as “survivors”;
the others are discarded -- this is the
selection process

4/21/2001 19:20 36course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

evolutionary methods, cont.
• the survivors’ genes are mutated, crossed-

over, etc., and new individuals are so formed,
which are then tested and scored

• in effect, the evolutionary process is
searching through the space of solutions to
find the one with the highest fitness

• often used for solving optimization problems
• trick is proper definition of representation,

operators and fitness function

7

4/21/2001 19:20 37course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

evolutionary methods:
applications.

• tuning parameters (such as gains in a
control system)

• developing controllers (policies) for
individual robots

• developing group strategies for multi-robot
systems (by testing groups as populations)

4/21/2001 19:20 38course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

genetic algorithms.
[Holland, 1975]

4/21/2001 19:20 39course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

GA’s vs GP’s.
• GA = genetic algorithm

– representation is strings of genes
• GP = genetic programming

– representation is pieces of executable
programs

• GP operates at a higher level of
abstraction than GA’s

• examples:
– classifier systems
– evolving structure/behavior [Sims]

4/21/2001 19:20 40course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

fuzzy logic.

• fuzzy control produces actions using a set
of fuzzy rules based on fuzzy logic

• this includes:
– fuzzifying: mapping sensor readings into a set

of fuzzy inputs
– fuzzy rule base: a set of IF-THEN rules
– fuzzy inference: maps fuzzy sets onto other

fuzzy sets using membership functions
– defuzzifying: mapping a set of fuzzy outputs

onto a set of crisp output commands

4/21/2001 19:20 41course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

fuzzy control.

• fuzzy logic allows for specifying behaviors
as fuzzy rules

• such behaviors can be smoothly blended
together

• fuzzy rules can be learned

4/21/2001 19:20 42course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

memory-based learning (MBL).
• involves storing the exact parameters of a

situation/action
• important for systems with a great deal of

parameters, where blind search through
parameter space would take too long

• takes a lot of space for data storage
• a trade-off against computation time
• assumed it is best to use space to

remember rather than time to compute

8

4/21/2001 19:20 43course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

symbolic learning.
• induction on decision trees
• learning new rules given a set of predefined rules
• e.g., by inference or other logical techniques
• example: RoboSOAR

– logical reasoning system
– production system based on implications or rules
– uses chunking
– conflict resolution mechanism when different rules apply
– continuous conversion of deliberative information to

efficient representations

4/21/2001 19:20 44course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

multi-strategy learning.

• some learning methods are effectively
combined

• NN’s and RL is common
– use NN’s to generalize states
– then apply RL in a reduced state space

• NN’s and MBL
– use NN’s to interpolate between instances

• NN’s and fuzzy is also popular
• NN’s and GA’s is also useful

4/21/2001 19:20 45course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

learning to play games.
• learning from humans

– Checkers [Samuels, 1959]

– too many games are needed
– humans are noisy
– humans are learning

• learning from computers
– Backgammon [Tesauro, 1992]

– lack of generalization
– deceptive landscape
– premature convergence 4/21/2001 19:20 46course notes adapted from:

Introduction to Robotics © Maja Mataric, USC
Autonomous Systems © Andreas Birk, VUB

Tron.
• learning from humans on the Internet

[Funes, Sklar, Juillé & Pollack, 1998]

• human users collectively supply fitness function
• software agents collectively supply intelligent opponent

http://www.demo.cs.brandeis.edu/tron

4/21/2001 19:20 47course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

Tron architecture:
two levels of co-evolution.

4/21/2001 19:20 48course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

Tron results: computer learning.

9

4/21/2001 19:20 49course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

state of the art.

• there are many learning techniques
– use dependant on application

• robotics is a particularly challenging domain
for learning
– very few successful examples
– active area of research

• research journals
– Machine Learning, Artificial Intelligence, Fuzzy

Computing, Neural Networks, Adaptive
Computing

4/21/2001 19:20 50course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

state of the art, cont.
• supervised learning has been used to learn

controllers for complex architectures, e.g., many DOF, as
well as for navigating specific paths and performing
articulated skills (e.g., juggling, pole-balancing)

• MBL has been used to learn controllers for very similar
manipulator tasks (as above)

• RL has been used to learn controllers for individual
navigating robots, groups of foraging robots, map-learning
and maze-learning robots

• evolutionary learning has been used to learn
controllers for individual navigating robots, maze-solving
robots, herding robots and foraging robots

4/21/2001 19:20 51course notes adapted from:
Introduction to Robotics © Maja Mataric, USC

Autonomous Systems © Andreas Birk, VUB

reading.

• Reward Functions for Accelerated
Learning [Mataric]
(in course pack II)

• Issues in Evolutionary Robotics
[Harvey, Husbands and Cliff]
(in course pack II)

