
CS1007 lecture #4 notes

thu 12 sep 2002

� news

� data types and storage

� variables and assignment

� binary numbers and arithmetic

� ASCII

� Strings

� math operators

� increment and decrement operators

� reading: ch 2.5,2.7-2.12

cs1007-fall2002-sklar-lect04 1

news.
� always check class web: http://www.columbia.edu/˜cs1007

� homework #1 is due next tuesday

� recitation lists are being posted on the web...

� if you haven’t signed up yet, email Min Co (mtc38@columbia.edu) and the recitation TA

� TAs will also have office hours in the TA room in Mudd (also posted on the web)

� check out the “human help” link for all office and recitation hours

cs1007-fall2002-sklar-lect04 2

data and storage.
� last week we talked about output

� programs = objects + methods

� objects = data

� data must be stored

� all storage is numeric (0’s and 1’s)

cs1007-fall2002-sklar-lect04 3

memory.
� think of the computer’s memory as a bunch of boxes

� inside each box, there is a number

� you give each box a name

� defining a variable

� example:

program code:

int x;

computer’s memory:
x �

cs1007-fall2002-sklar-lect04 4

variables.
� variables have:

– name

– type

– value

� naming rules:

– names may contain letters and/or numbers

– but cannot begin with a number

– names may also contain underscore () and dollar sign ($)

– underscore is used frequently; dollar sign is not too common in Java

– can be of any length

– cannot use Java keywords

– Java is case-sensitive!!

cs1007-fall2002-sklar-lect04 5

primitive data types.
� numeric

byte 8 bits -128 = -2� 127 = 2� - 1
short 16 bits -32,768 = -2 � � 32,767 = 2 � � - 1
int 32 bits -2 � � 2 � � - 1
long 64 bits -2 � � 2 � � - 1
float 32 bits � -3.4E+38, 7 sig dig � 3.4E+38, 7 sig dig
double 64 bits � -1.7E+308, 15 sig dig � 1.7E+308, 15 sig dig

� boolean
boolean 1 bit

� character
char 16 bits

� 7 bits for ASCII

� 8 bits for extended ASCII

� 16 bits for Unicode

cs1007-fall2002-sklar-lect04 6

assignment.
� = is the assignment operator

� example:

program code:

int x; // declaration
x = 19; // assignment

or

int x = 19;

computer’s memory:
x � 19

cs1007-fall2002-sklar-lect04 7

storage is binary.

x � 19

is really stored like this:

0 1 0 0 1 1

this is base 2!

19 � �

= 10011

�

cs1007-fall2002-sklar-lect04 8

remember bases?

base 10:
362 = (2 * 1) + (6 * 10) + (3 * 100)

= (2 * 10 �) + (6 * 10 �) + (3 * 10 �)
base 2:

1 = 2 � = 1
10 = 2 � = 2

100 = 2 � = 4
1000 = 2 � = 8

10000 = 2 � = 16
...

so
10011

�

= (1 * 2 �) + (1 * 2 �) + (0 * 2 �) + (0 * 2 �) + (1 * 2 �)
= (1 * 1) + (1 * 2) + (0 * 4) + (0 * 8) + (1 * 16)
= 19 � �

cs1007-fall2002-sklar-lect04 9

base conversion: 2 to 10.

1010100
�

=
= =

(0 * 2 �) (0 * 1) 0
+ (0 * 2 �) + (0 * 2) + 0
+ (1 * 2 �) + (1 * 4) + 4
+ (0 * 2 �) + (0 * 8) + 0
+ (1 * 2 �) + (1 * 16) + 16
+ (0 * 2 �) + (0 * 32) + 0
+ (1 * 2 �) + (1 * 64) + 64

= 84 � �

cs1007-fall2002-sklar-lect04 10

base conversion: 10 to 2.

84 � �

=
84 / 2 = 42 rem 0
42 / 2 = 21 rem 0
21 / 2 = 10 rem 1
10 / 2 = 5 rem 0

5 / 2 = 2 rem 1
2 / 2 = 1 rem 0
1 / 2 = 0 rem 1

� 1010100

�

cs1007-fall2002-sklar-lect04 11

two tricks.

base 8 (octal):
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

base 16 (hexadecimal, “hex”):
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A (10)
0011 3 1011 B (11)
0100 4 1100 C (12)
0101 5 1101 D (13)
0110 6 1110 E (14)
0111 7 1111 F (15)

� replace each octal (or hex) digit with the 3 (or 4) digit binary

� replace every 3 (or 4) binary digits with one octal (or hex) digit

cs1007-fall2002-sklar-lect04 12

back to storage.

x � 19

is really stored like this:

31 30 ... 7 6 5 4 3 2 1 0
0 0 ... 0 0 0 1 0 0 1 1

� bits are numbered, from right to left, starting with 0

� highest (rightmost, “most significant”) bit is sign bit

cs1007-fall2002-sklar-lect04 13

ASCII.
� ASCII = American Standard Code for Information Interchange

� characters are stored as numbers

� standard table defines 128 characters

� example:

char c = ’A’;

‘A’ = 65 � �

= 01000001

�

c �

7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 1

cs1007-fall2002-sklar-lect04 14

Strings.
� a String in Java is a special data type — it’s called a wrapper class (which we’ll talk

about in detail later)

� a String is essentially a group of chars

� it comes with a method called length() that lets you find out how many characters are
in the string (i.e., how long it is)

� it comes with a number of other methods, which we’ll talk about later

� a char has single quotes around it

char c = ’A’;

� a String has double quotes around it

String s = "hello world!";

� in this case, the method s.length() returns 12

cs1007-fall2002-sklar-lect04 15

mathematical operators.
� unary plus

� unary minus

� addition

� subtraction

� multiplication

� division

� modulo

example:

int x, y;
x = -5;
y = x * 7;
y = y + 3;
x = x * -2;
y = x / 19;

what are x and y equal to?

modulo means “remainder after integer division”

cs1007-fall2002-sklar-lect04 16

coercion or type casting.
� remember from last time: data of type char is stored as a number — which is really an

index into the ASCII table

� a declaration like this:

char y = ’A’;

really stores a 65 (the ASCII value of ’A’) in a memory location that is labeled y

� you can do math on that 65 by coercing (aka type casting) the char to an int

� for example:

char y = ’A’; // initialize variable y to store an A
int x = (int)y; // initialize variable x to store 65
x = x + 1; // increment x (to 66)
y = (char)x; // coerce x from an int to a char (’B’)

cs1007-fall2002-sklar-lect04 17

increment and decrement operators.
� increment: � �

i++;
is the same as:
i = i + 1;

� decrement: � �

i--;
is the same as:
i = i - 1;

cs1007-fall2002-sklar-lect04 18

assignment operators.

+=
i += 3; is the same as: i = i + 3;

-=
i -= 3; is the same as: i = i - 3;

*=
i *= 3; is the same as: i = i * 3;

/=
i /= 3; is the same as: i = i / 3;

%=
i %= 3; is the same as: i = i % 3;

cs1007-fall2002-sklar-lect04 19

