
CS1007 lecture #8 notes

thu 26 sep 2002

� news

– homework #2 due tue oct 1

– homework #1 should be returned in recitation this week

– short quiz #1 today

� the java.util.Random class

� the java.util.Date class

� introduction to recursion

� method overloading

� reading: ch 4.7-4.13

cs1007-fall2002-sklar-lect08 1

classes.
� classes are the block around which Java is organized

� classes are composed of

– data elements:

� variables — i.e., their values can change during the execution of a program

� constants — i.e., their values CANNOT change during the execution of a program

� like variables, they have a type, a name and a value

– methods

� modules that perform actions on the data elements

� like variables, they have a type, a name and a value

� unlike variables, the type can be void, which means that they don’t really have a
value

� constructors — special types of methods used to set up an object before it is used
for the first time

� groups of related classes are organized into packages

cs1007-fall2002-sklar-lect08 2

java.util.Random class (1).
� the Random class in the java.util package

� there is another way to generate random numbers besides using the Math.random()
from the java.lang.Math class

� there are two methods defined in the Random class:

public Random();
public Random(long seed);
// constructor -- can be called with or without a seed

public void setSeed(long seed);
// sets the seed for the random number generator

� this class implements a pseudo random number generator

� which is really a sequence of numbers

� the seed tells the random number generator where to start the sequence

cs1007-fall2002-sklar-lect08 3

java.util.Random class (2).
� more methods defined in the Random class, used to get the random numbers:

public float nextFloat();
// returns a random number between 0.0 (inclusive) and
// 1.0 (exclusive)

public int nextInt();
// returns a random number that ranges over all possible
// int values (positive and negative)

cs1007-fall2002-sklar-lect08 4

java.util.Date class (1).
� this class is handy for getting the current date

� or creating a Date object set to a certain date

� some methods defined in the Date class:

public Date();
public Date(long date);
// constructor -- called without an argument, uses the
// current time; otherwise uses the time argument

public boolean after(Date arg);
public boolean before(Date arg);
public boolean equals(Object arg);
public long getTime();
public String toString();

� computer time is measured in milliseconds since midnight, January 1, 1970 GMT

cs1007-fall2002-sklar-lect08 5

java.util.Date class (2).
� a Date object is handy to use as a seed for a random number generator

� for example:

import java.util.*;
public class ex7g {
public static void main(String[] args) {

Date now = new Date();
Random rnd = new Random(now.getTime());
System.out.println("here’s the first random number: "+

rnd.nextInt());
} // end of main()

} // end of class ex7g

cs1007-fall2002-sklar-lect08 6

methods — declaring them.
� like a variable, has:

– data type:

� primitive data type, or

� class

– name (i.e., identifier)

� also has:

– arguments (optional)

� also called parameters

� formal parameters are in the blueprint, i.e., the method declaration

� actual parameters are in the object, i.e., the run time instance of the class

– throws clause (optional)
(we’ll defer discussion of this until later in the term)

– body

– return value (optional)

cs1007-fall2002-sklar-lect08 7

methods — using them.
� program control jumps inside the body of the method when the method is called (or

invoked)

� arguments are treated like local variables and are initialized to the values of the calling
arguments

� method body (i.e., statements) are executed

� method returns to calling location

� if method is not of type void, then it also returns a value

– return type must be the same as the method’s type

– calling sequence (typically) sets method’s return value to a (local) variable; or uses
the method’s return value in some way (e.g., a print statement)

cs1007-fall2002-sklar-lect08 8

object relationships.
� are hierarchical

� example:

java.lang.Object
|
+--java.lang.Number

|
+--java.lang.Integer

� is-a relationship

– an object that is an instance of a class

– an Integer is a Number, which is a Object

– children inherit properties of their parents; formally called inheritance

� has-a relationship

– if an object declares data whose type is also a class

cs1007-fall2002-sklar-lect08 9

method overloading.
� using the same method name with formal parameters of different types

� example:

– java.lang.System has a variable called out

– which is a java.io.PrintStream

– whose declarations include:

public void println();
public void println(boolean x);
public void println(char x);
public void println(char[] x);
public void println(double x);
public void println(float x);
public void println(int x);
public void println(long x);
public void println(Object x);
public void println(String x);

cs1007-fall2002-sklar-lect08 10

recursion.
� recursion is defining something in terms of itself

� there are many examples in nature

� and in mathematics

� and in computer graphics, e.g., the Koch snowflake (textbook, p.485)

cs1007-fall2002-sklar-lect08 11

power function.
� power is defined recursively: ��� �

� �����
� ������

� 	
 � � � � �� �

� 	
 � �
 � �� � �

�� � �� � � � � � �� � � � �� � �
cs1007-fall2002-sklar-lect08 12

here it is in a Java method.
� public int power (int x, int y) {

if (y == 0) {
return(1);

}
else if (y == 1) {

return(x);
}
else {

return(x * power(x, y-1));
}

} // end of power() method

� Notice that power() calls itself!

� You can do this with any method except main()

� BUT beware of infinite loops!!!

� You have to know when and how to stop the recursion — what is the stopping condition

cs1007-fall2002-sklar-lect08 13

let’s walk through power(2,4).
�

call x y return value

1 power(2,4) 2 4 2 * power(2,3)
2 power(2,3) 2 3 2 * power(2,2)
3 power(2,2) 2 2 2 * power(2,1)
4 power(2,1) 2 1 2

� the first is the original call

� followed by three recursive calls

cs1007-fall2002-sklar-lect08 14

