
� �

CS1007 lecture #12 notes

tue 15 oct 2002

� news

� objects

� classes

� constants

� methods (review)

� encapsulation and visibility
(the public and private modifiers)

� instantiation
(the static modifier)

� reading: ch 6.1-6.7

cs1007-spring2002-sklar-lect12 1� �

� �

objects.

� objects have:

– state

– set of behaviors

� example: a robot

– state

� where it is

� where it was a minute ago

� how fast its motors are turning now

� how fast its motors can turn

– behaviors

� turn

� go forward

� go backward

� stop

cs1007-spring2002-sklar-lect12 2� �

� �

classes: define objects.

� are “blueprints” for creating instances of objects

� example: a house

– class = architect’s blueprint

– instance = a house built following that blueprint

� instantiate = to build the house

� you can build MANY houses using the same blueprint, so you can instantiate many
objects using the same class

cs1007-spring2002-sklar-lect12 3� �

� �

classes: contain members.
� data declarations (e.g., the people and the stuff inside the house)

– constants

– variables

� methods (e.g., the things people do with the stuff)

– actions that are performed on the object and/or with its data

– a constructor is a special method used to instantiate an object of that class

– some methods may change the values of the variables

– some methods may return the values of the variables

� scope (e.g., where can people do things with the stuff?)

– local vs global

– instance data

– method data

cs1007-spring2002-sklar-lect12 4� �

� �

constants.

� their values CANNOT change during the execution of a program

� i.e., their values remain constant

� like variables, they have a type, a name and a value

� the keyword final indicates that the variable is a constant and its value will not change
during the execution of the program

� example:

public class Coin {
final int HEADS=0;
final int TAILS=1;
.
.
.

} // end of Coin class

cs1007-spring2002-sklar-lect12 5� �

� �

method declaration.

� like a variable, has:

– data type:

� primitive data type, or

� class

– name (i.e., identifier)

� also has:

– arguments (optional)

� also called parameters

� formal parameters are in the blueprint, i.e., the method declaration

� actual parameters are in the object, i.e., the run time instance of the class

– throws clause (optional)
(we’ll defer discussion of this until later in the term)

– body

– return value (optional)

cs1007-spring2002-sklar-lect12 6� �

� �

method use.

� program control jumps inside the body of the method when the method is called (or
invoked)

� arguments are treated like local variables and are initialized to the values of the calling
arguments

� method body (i.e., statements) are executed

� method returns to calling location

� if method is not of type void, then it also returns a value

– return type must be the same as the method’s type

– calling sequence (typically) sets method’s return value to a (local) variable; or uses
the method’s return value in some way (e.g., a print statement)

cs1007-spring2002-sklar-lect12 7� �

� �

object relationships.
� are hierarchical

� example:

java.lang.Object
|
+--java.lang.Number

|
+--java.lang.Integer

� is-a relationship

– an object that is an instance of a class

– an Integer is-a Number, which is-a Object

– children inherit properties of their parents; formally called inheritance

� has-a relationship

– if an object declares data whose type is also a class

cs1007-spring2002-sklar-lect12 8� �

� �

method overloading.

� using the same method name with formal parameters of different types

� example:

– java.lang.System has-a variable called out,
which is-a java.io.PrintStream

– whose declarations include:

public void println();
public void println(boolean x);
public void println(char x);
public void println(double x);
public void println(float x);
public void println(int x);
public void println(Object x);
public void println(String x);

� these are all different ways of printing data, but the difference is the type of object being
printed

cs1007-spring2002-sklar-lect12 9� �

� �

encapsulation and visibility.

� objects should be self-contained and self-governing

� only methods that are part of an object should be able to change that object’s data

� some data elements should not even be seen (or visible) outside the object

� public data elements can be seen (i.e., read) and modified (i.e., written) from outside the
object

� private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from
inside the object

� typically, variables are private and methods that provide access to them (both read and
write) are public

� typically, constants are public

� example: house

– walls provide privacy for the inside

– windows provide public viewing of some of the inside

cs1007-spring2002-sklar-lect12 10� �

� �

static modifier (1).

� when we instantiate an object in order to use it, we are creating an instance variable
e.g., Random r = new Random();

� some members in some classes are static which means that they don’t have to be
instantiated to be used

� for example, all the methods in the java.lang.Math class are static

– you don’t need to create an object reference variable whose type is Math in order to
use the methods in the Math class

– e.g., Math.abs(), Math.random()

� you use the name of the class preceding the dot operator, instead of the name of the
instance variable, in order to access the static members of the class

� e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type
Random that we created above)

� that is why we can use main() without instantiating anything
i.e., public static void main()

cs1007-spring2002-sklar-lect12 11� �

� �

static modifier (2).
� constants, variables and methods can all be static

� except constructors
(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

� typically, constants are static

� example:

public class Coin {
public static final int HEADS=0;
public static final int TAILS=1;
.
.
.

} // end of Coin class

� we can now access Coin.HEADS and Coin.TAILS without instantiating and/or
without referring to a specific instance variable

cs1007-spring2002-sklar-lect12 12� �

