N

CS1007 lecture #12 notes

tue 15 oct 2002

® NEws
e Objects

e classes

e constants

e methods (review)

e encapsulation and visibility
(the publ i c and pri vat e modifiers)

e instantiation
(the st at i ¢ modifier)

e reading: ch 6.1-6.7

¢s1007-spring2002-sklar-lect12

N

objects.

e Objects have:

— state
— set of behaviors

e example: a robot

— state

x where it iIs
* Where it was a minute ago
« how fast its motors are turning now
* how fast its motors can turn
— behaviors

* turn

* go forward
* g0 backward
* Stop

¢s1007-spring2002-sklar-lect12

N

classes: define objects.

e are “blueprints” for creating instances of objects
e example: a house

— class = architect’s blueprint
— instance = a house built following that blueprint

e instantiate = to build the house

e you can build MANY houses using the same blueprint, so you can instantiate many
objects using the same class

¢s1007-spring2002-sklar-lect12

N

classes: contain members.

e data declarations (e.g., the people and the stuff inside the house)

— constants
— variables

e methods (e.g., the things people do with the stuff)

— actions that are performed on the object and/or with its data

— a constructor is a special method used to instantiate an object of that class
— some methods may change the values of the variables

— some methods may return the values of the variables

e scope (e.g., where can people do things with the stuff?)

— local vs global
— Instance data
— method data

¢s1007-spring2002-sklar-lect12

constants.

e their values CANNOT change during the execution of a program
e i.e., their values remain constant
e like variables, they have a type, a name and a value

e the keyword f i nal indicates that the variable is a constant and its value will not change
during the execution of the program

e example:

public class Coin {
final i nt HEADS=0;
final 1 nt TAILS=1;

} I/ end of Coin class

¢s1007-spring2002-sklar-lect12 5

N

method declaration.

e like a variable, has:

— data type:
* primitive data type, or
* class
— name (i.e., identifier)
e also has:

— arguments (optional)
* also called parameters
x formal parametersare in the blueprint, i.e., the method declaration
* actual parametersare in the object, i.e., the run time instance of the class

— throws clause (optional)
(we' Il defer discussion of thisuntil later in the term)

— body
— return value (optional)

¢s1007-spring2002-sklar-lect12

N

method use.

e program control jumps inside the body of the method when the method is called (or
invoked)

e arguments are treated like local variables and are initialized to the values of the calling
arguments

e method body (i.e., statements) are executed
e method returnsto calling location
e if method is not of type void, then it also returnsa value

— return type must be the same as the method’s type

— calling sequence (typically) sets method’s return value to a (local) variable; or uses
the method’s return value in some way (e.g., a print statement)

¢s1007-spring2002-sklar-lect12

object relationships.

e are hierarchical

e example:

j ava. | ang. Qbj ect

+- -] ava. | ang. Nunber

+--java. |l ang. | nt eger

e is-a relationship

— an object that is an instance of a class
—an | nt eger isaNunber, which is-a(Obj ect
— children inherit properties of their parents; formally called inheritance

¢ has-a relationship

— if an object declares data whose type is also a class

¢s1007-spring2002-sklar-lect12

method overloading.

e using the same method name with formal parameters of different types
e example:

—j ava. | ang. Syst emhas-a variable called out ,
whichis-aj ava.i o. Print Stream

— whose declarations include:

public void println();

public void println(boolean x);
public void println(char x);
public void println(double x);
public void println(float x);
public void printin(int x);
public void println(Object x);

public void println(String x);

e these are all different ways of printing data, but the difference is the type of object being
printed

¢s1007-spring2002-sklar-lect12

N

N

encapsulation and visibility.

e objects should be self-contained and self-governing
e only methods that are part of an object should be able to change that object’s data
e some data elements should not even be seen (or visible) outside the object

e public data elements can be seen (i.e., read) and modified (i.e., written) from outside the
object

e private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from
inside the object

e typically, variables are private and methods that provide access to them (both read and
write) are public

e typically, constants are public
e example: house

— walls provide privacy for the inside
— windows provide public viewing of some of the inside

€s1007-spring2002-sklar-lect12 10

static modifier (1).

e When we instantiate an object in order to use it, we are creating an instance variable
e.g., Randomr = new Randon();

e some members in some classes are static which means that they don’t have to be
instantiated to be used

e for example, all the methods inthe j ava. | ang. Mat h classare st ati c

— you don’t need to create an object reference variable whose type is Mat h in order to
use the methods in the Mat h class

—-e.g., Math. abs(),Math. random()

e you use the name of the class preceding the dot operator, instead of the name of the
Instance variable, in order to access the static members of the class

e .0, Mat h. randon() vsr. next Fl oat () (where r is the instance variable of type
Randomthat we created above)

e that is why we can use mai n() without instantiating anything
l.e.,public static void main()

€s1007-spring2002-sklar-lect12 11

static modifier (2).

e constants, variables and methods can all be static

e except constructors
(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

e typically, constants are static

e example:

public class Coin {
public static final i1nt HEADS=O;
public static final int TAILS=1,

} I/ end of Coin class

e We can now access Coi n. HEADS and Coi n. TAI LS without instantiating and/or
without referring to a specific instance variable

€s1007-spring2002-sklar-lect12 12

