
� �

CS1007 lecture #13 notes

thu 17 oct 2002

� news

– revamped assessment: check web page for new points and new schedule

� arrays of objects

� references

� comparing objects

� reading: ch 6.8-6.15

cs1007-spring2002-sklar-lect13 1� �

� �

creating objects — review.

� a class is used to create an object

– the class is a blueprint; the object is what really gets built

� there are many native classes that come with Java

� you can also define your own classes

– this is like inventing your own data type!

– you can then declare variables whose data type is the class you invented

� all classes are made up of members

– members can be variables, constants, constructors, methods

– methods are accessed using the dot operator

� a variable whose data type is a class is a reference to an object

– in order to create an object, you have to declare a variable whose data type is a class

– this allocates memory for a reference to the object

– THEN you have to instantiate the object by calling the class’s constructor, which
allocates memory for the object

cs1007-spring2002-sklar-lect13 2� �

� �

arrays of objects (1).

� we can have arrays of anything — i.e., other data types — like classes

� for example, we can have an array of Coin, using the class from last lecture

� the Coin[] variable contains a list of addresses

� as with int or char arrays, first you must declare and instantiate the array:

Coin[] pocket = new Coin[10];

� but because the array elements are not primitive data types, you must also instantiate
each array entry:

for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();

} // end for i

cs1007-spring2002-sklar-lect13 3� �

� �

arrays of objects (2).

public class ex13a {
public static void main(String[] args) {
final int NUMCOINS = 10;
Coin[] pocket = new Coin[NUMCOINS];
int headcount = 0, tailcount = 0;
// instantiate each of the coins in the array
for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();

} // end for i
// print the array
for (int i=0; i<pocket.length; i++) {
System.out.println("i["+i+"]="+pocket[i]);

} // end for i
} // end of main()

} // end of class ex13a

cs1007-spring2002-sklar-lect13 4� �

� �

arrays of objects (3).

public class Coin {
public final int HEADS = 0;
public final int TAILS = 1;
private int face;
public Coin() {

flip();
} // end of Coin()
public void flip() {

face = (int)(Math.random()*2);
} // end of flip()
public int getFace() {

return face;
} // end of getFace()
public String toString() {

String faceName;
if (face == HEADS) {
faceName = "heads";

}
else {
faceName = "tails";

}
return faceName;

} // end of toString()
} // end of class Coin

cs1007-spring2002-sklar-lect13 5� �

� �

arrays of objects (4).

� sample output:
i[0]=tails
i[1]=tails
i[2]=heads
i[3]=tails
i[4]=tails
i[5]=heads
i[6]=tails
i[7]=heads
i[8]=heads
i[9]=heads

�
�

�
� but why do you have to instantiate twice?

� because when you instantiate the first time:

Coin[] pocket = new Coin[10];

you are only allocating memory for references for each Coin array element

cs1007-spring2002-sklar-lect13 6� �

� �

references (1).

� when we declare a variable whose data type is a class, we are declaring an object
reference variable

� that variable refers to the location in the computer’s memory where the actual object is
being stored

� an object reference variable and an object are two separate things

� declaration of an object reference variable:

Coin x;

� creation of an object (also called “construction”, “instantiation”):

x = new Coin();

cs1007-spring2002-sklar-lect13 7� �

� �

references (2).
� when you declare a variable as a primitive data type, the computer sets aside a fixed

amount of memory, based on the size of the data type

� when you declare a variable of any other data type (i.e., a class), you are actually
declaring a reference

� a reference is typically the size of an int or a long

� it stores an address or the location in the computer’s memory of where the actual data
will be kept

� you can think of it like a telephone book

– the phone book has a bunch of addresses in it

– but not the actual buildings

– just the locations of buildings

cs1007-spring2002-sklar-lect13 8� �

� �

references (3).

� here’s how it works inside the computer

� given the following declarations:

int i = 45;
String s = "hello";

� the memory looks something like this:
i s
45 � � hello

� i is the label for the location in memory where the actual data is stored — in this case
the int 45

� s is the label for the location in memory where the address is stored; the address is the
location in memory where the actual data for s is stored

� in C, this is called a pointer

� we say that s points to or references the location in memory where the actual data for s
is stored

cs1007-spring2002-sklar-lect13 9� �

� �

references (4).

� the reference is actually a memory address, usually a long

� given our example on previous slide, the memory might look like this:

variable name location in memory value
i 837542 45
s 837543 837602

837544
837545
...

s[0] 837602 ’h’
s[1] 837603 ’e’
s[2] 837604 ’l’
s[3] 837605 ’l’
s[4] 837606 ’o’

cs1007-spring2002-sklar-lect13 10� �

� �

references (5).

� let’s go back to the Coin example

� comment out the toString() method and re-run the example

� here’s the output now:

i[0]=Coin@73d6a5
i[1]=Coin@111f71
i[2]=Coin@273d3c
i[3]=Coin@256a7c
i[4]=Coin@720eeb
i[5]=Coin@3179c3
i[6]=Coin@310d42
i[7]=Coin@5d87b2
i[8]=Coin@77d134
i[9]=Coin@47e553

� these are the references of the array elements

� we can see these reference values because we took out the toString() method —
calling System.out.println(pocket[i]) automatically coerces its argument
(pocket[i]) to a String so it can print it; if there is no explicit toString()
method in the class, then a reference is the closest String representation

cs1007-spring2002-sklar-lect13 11� �

� �

references (6).
� when an object reference variable has been declared but the object it refers to has not

been created, then the object reference variable is called a null reference

� for example:

Coin x;
x.flip();

� will generate an error called a NullPointerException because the object which x
refers to has not been instantiated

� you can use a constant called null to check if an object reference variable is null

� for example:

Coin x;
if (x != null) {
x.flip();

}

cs1007-spring2002-sklar-lect13 12� �

� �

references (7).

� an alias is an object reference variable that refers to an object that was previously
constructed and is already referred to by another object reference variable

� for example:

Coin x = new Coin();
Coin y;
y = x;
y.flip();

� y is called an “alias” of x (and vice versa) because they both refer to the same location in
the computer’s memory

cs1007-spring2002-sklar-lect13 13� �

� �

references (8).

� garbage collection is necessary when all references to an object are gone

� because when there are no object reference variables, then there is no way to know where
in memory an object is located

� Java handles this for you automatically

� the JVM periodically invokes automatic garbage collection while it is running

� all the memory that is allocated to an application but is not being used is “restored” so
that it can be re-allocated to the application later

� if you want to perform some garbage collection on a class that you create yourself, then
you would write a method called finalize() and whenever the automatic garbage
collection was invoked and cleaned up an object of your class type, then your
finalize() method would be called

cs1007-spring2002-sklar-lect13 14� �

� �

references (9).

� when you pass objects as parameters (arguments) to a method, a reference is passed, not
the actual object

� so be careful about what changes!

� here’s an example using three classes:

– Num

– ParameterTester

– ex13b

cs1007-spring2002-sklar-lect13 15� �

� �

references (10).

public class Num {

private int value;

public Num(int update) {
value = update;

} // end of constructor

public void setValue(int update) {
value = update;

} // end of setValue()

public String toString() {
return value+"";

} // end of toString()

} // end of Num class

cs1007-spring2002-sklar-lect13 16� �

� �

references (11).

public class ParameterTester {

public void changeValues(int f1, Num f2, Num f3) {
System.out.println("start call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);
f1 = 999;
f2.setValue(888);
f3 = new Num (777);
System.out.println("end call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);
} // end of changeValues()

} // end of class ParameterTester

cs1007-spring2002-sklar-lect13 17� �

� �

references (12).

public class ex13b {

public static void main(String[] args) {
ParameterTester tester = new ParameterTester();
int a1 = 111;
Num a2 = new Num(222);
Num a3 = new Num(333);
System.out.println("before call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);
tester.changeValues(a1, a2, a3);
System.out.println("after call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);
} // end of main()

} // end of class ex13b

cs1007-spring2002-sklar-lect13 18� �

� �

references (13).

� sample output:

before call: a1=111 a2=222 a3=333
start call: f1=111 f2=222 f3=333
end call: f1=999 f2=888 f3=777
after call: a1=111 a2=888 a3=333

cs1007-spring2002-sklar-lect13 19� �

� �

static modifier (1).
� an object reference variable is also called an instance variable

� because we instantiate the object in order to use it

� some members in some classes are static which means that they don’t have to be
instantiated to be used

� but static methods can only refer to local variables or to other static members

� go back to the earlier example ex13b

� if we put the changeValues() method inside the ex13b class file, then we’d need to
instantiate an instance of the ex13b class in order to access that method

cs1007-spring2002-sklar-lect13 20� �

� �

static modifier (2).

public class ex13c {

public static void main(String[] args) {
ex13c tester = new ex13c();
int a1 = 111;
Num a2 = new Num(222);
Num a3 = new Num(333);
System.out.println("before call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);
tester.changeValues(a1, a2, a3);
System.out.println("after call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);
} // end of main()

public void changeValues(int f1, Num f2, Num f3) {
System.out.println("start call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);

cs1007-spring2002-sklar-lect13 21� �

� �

f1 = 999;
f2.setValue(888);
f3 = new Num (777);
System.out.println("end call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);
} // end of changeValues()

} // end of class ex13c

cs1007-spring2002-sklar-lect13 22� �

� �

comparing objects (1).

� comparing two Java objects is tricky

� you have to be careful of what you are comparing:

– is it the value of some member(s) of the class?

– or is it the reference?

� using == compares the references

� which is not the same as comparing the values of member(s) of the class

� here’s an example from the Coin class:
– comparing the value of the face member of two coins:
if (pocket[0].getFace() == pocket[1].getFace()) {
System.out.println("coins 0 and 1 have the same face value");

}

– versus comparing the references:
if (pocket[0] == pocket[1]) {
System.out.println("coins 0 and 1 are the same");

}

� many classes have a method called compareTo() to compare the value of member(s)
of the class

cs1007-spring2002-sklar-lect13 23� �

� �

comparing objects (2).
� in order to compare the value of two Strings, we need to use the method

public int compareTo(String str)
from the java.lang.String class

� this method does a lexical comparison of its String argument with the current object
(i.e., its instantiated value)

� it returns an int as follows:
if the current object... then the method returns
is the same text as str 0
comes lexically before str an int � 0 (e.g., -1)
comes lexically after str an int � 0 (e.g., +1)

� using == to compare two Strings compares their addresses, NOT the values of the text
they store

� this is the same for comparing any two objects in Java

� most classes define a compareTo() method, just as most classes define a
toString() method

cs1007-spring2002-sklar-lect13 24� �

� �

comparing objects (3).

� for example:

public class ex13d {
public static void main(String[] args) {
String s1 = new String("hello");
String s2 = new String("hello");
System.out.println("s1=["+s1+"]");
System.out.println("s2=["+s2+"]");
System.out.println("(s1 == s2) = " + (s1 == s2));
System.out.println("s1.compareTo(s2)="+s1.compareTo(s2));
System.out.println("s2.compareTo(s1)="+s2.compareTo(s1));

} // end of main()
} // end of class ex13d

� sample output:

s1=[hello]
s2=[hello]
(s1 == s2) = false
s1.compareTo(s2)=0
s2.compareTo(s1)=0

cs1007-spring2002-sklar-lect13 25� �

