CS1007 lecture #13 notes

thu 17 oct 2002

® NEWS
— revamped assessment: check web page for new points and new schedule
e arrays of objects
e references
e comparing objects
e reading: ch 6.8-6.15

€s1007-spring2002-sklar-lect13

N

N

creating objects — review.

e a class is used to create an object

— the class is a blueprint; the object is what really gets built
e there are many native classes that come with Java
e you can also define your own classes

— this is like inventing your own data type!
— you can then declare variables whose data type is the class you invented

e all classes are made up of members

— members can be variables, constants, constructors, methods
— methods are accessed using the dot operator

e a variable whose data type is a class is a reference to an object

— in order to create an object, you have to declare a variable whose data type is a class
— this allocates memory for a reference to the object

— THEN you have to instantiate the object by calling the class’s constructor, which
allocates memory for the object

€s1007-spring2002-sklar-lect13

arrays of objects (1).

e We can have arrays of anything — i.e., other data types — like classes
e for example, we can have an array of Coi n, using the class from last lecture
e the Coi n[] variable contains a list of addresses

e as with i nt or char arrays, first you must declare and instantiate the array:
Coi n[] pocket = new Coin[10];

e but because the array elements are not primitive data types, you must also instantiate
each array entry:

for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();
} /] end for i

€s1007-spring2002-sklar-lect13

N

arrays of objects (2).

public class exl1l3a {
public static void main(String[] args) {
final int NUMCO NS = 10;
Coi n[] pocket = new Coi n[NUMCO NSJ ;
| nt headcount = 0, tailcount = O;
/1l instantiate each of the coins in the array
for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();
} /1l end for i
/[l print the array
for (int i=0; i<pocket.length; i++) {
Systemout.printin("i["+ +"]="+pocket[i]);
} /] end for i
} // end of main()
} /'l end of class exl1l3a

€s1007-spring2002-sklar-lect13

N

arrays of objects (3).

public class Coin {
public final int HEADS
public final int TAILS
private int face;
public Coin() {
flip();
} /1 end of Coin()
public void flip() {
face = (int)(Math.randon()*2);
} /1 end of flip()
public int getFace() {
return face;
} /1 end of getFace()
public String toString() {
String faceNane;
if (face == HEADS) {

faceNane = "heads";
}
el se {

faceNane = "tail s";
}

return faceName;
} 1/ end of toString()
} /1 end of class Coin

€s1007-spring2002-sklar-lect13

arrays of objects (4).

e sample output:
i[0]=tails
i[1l]=tails
i [2] =heads
i[3]=tails
i[4]=tails
i [5] =heads
i[6]=tails
i [7] =heads
i [8] =heads
i [9] =heads

e but why do you have to instantiate twice?
e because when you instantiate the first time:

Coi n[] pocket = new Coin[10];

you are only allocating memory for references for each Coi n array element

€s1007-spring2002-sklar-lect13

N

N

references (1).

e When we declare a variable whose data type is a class, we are declaring an object
reference variable

e that variable refersto the location in the computer’s memory where the actual object is
being stored

e an object reference variable and an object are two separate things

e declaration of an object reference variable:
Coi n X;

e creation of an object (also called “construction”, “instantiation”):

x = new Coin();

€s1007-spring2002-sklar-lect13

references (2).

e When you declare a variable as a primitive data type, the computer sets aside a fixed
amount of memory, based on the size of the data type

e When you declare a variable of any other data type (i.e., a class), you are actually
declaring a reference

e a reference is typically the size of an int or a long

e it stores an address or the location in the computer’s memory of where the actual data
will be kept

e you can think of it like a telephone book

— the phone book has a bunch of addresses in it
— but not the actual buildings
— just the locations of buildings

€s1007-spring2002-sklar-lect13

references (3).

e here’s how it works inside the computer
e given the following declarations:

| nt | = 45;
String s = "hello";

e the memory looks something like this:
i S

o —lhel |l o

e i isthe label for the location in memory where the actual data is stored — in this case
thei nt 45

e S is the label for the location in memory where the address is stored; the address is the
location in memory where the actual data for s is stored

e in C, this is called a pointer
e We say that s pointsto or references the location in memory where the actual data for s
Is stored

€s1007-spring2002-sklar-lect13

N

references (4).

e the reference is actually a memory address, usually a | ong

e given our example on previous slide, the memory might look like this:

variable name | location in memory | value

i 837542 45

S 837543 837602
837544
837545

s[0] 837602 ' h’

s[1] 837603 e’

s[2] 837604 "

s[3] 837605]

s[4] 837606 'O’

€s1007-spring2002-sklar-lect13

10

references ().

e let’s go back to the Coi n example

e comment out thet oSt ri ng() method and re-run the example
e here’s the output now:

i [0] =Coi n@3d6a5
i[1]=Coi n@11f 71
i [2] =Coi n@73d3c
i [3] =Coi n@56a7c
i [4] =Coi n@20eeb
i [5] =Coi n@179c3
i [6] =Coi n@10d42
i [7] =Coi n@d87hb2
i [8] =Coi n@7d134
i [9] =Coi n@7e553

e these are the references of the array elements

e We can see these reference values because we took out thet oSt ri ng() method —
calling System out . printl n(pocket[i]) automatically coerces its argument
(pocket[i])toaStringsoitcan printit; if there is no explicitt oSt ri ng()
method in the class, then a reference is the closest St r i ng representation

€s1007-spring2002-sklar-lect13 11

N

references (6).

e When an object reference variable has been declared but the object it refers to has not
been created, then the object reference variable is called a null reference

e for example:
Coi n X;
x.flip();

e Will generate an error called a Nul | Poi nt er Except i on because the object which x
refers to has not been instantiated

e you can use a constant called nul | to check if an object reference variable is null
e for example:

Coi n X;

if (x !'=null) {

x.flip();
}

€s1007-spring2002-sklar-lect13 12

references (7).

e an aliasis an object reference variable that refers to an object that was previously
constructed and is already referred to by another object reference variable

e for example:

Coin x = new Coin();

Coi n vy;
y =X,
y.flip();

e y is called an “alias” of x (and vice versa) because they both refer to the same location in
the computer’s memory

€s1007-spring2002-sklar-lect13 13

N

references (8).

e garbage collection is necessary when all references to an object are gone

e because when there are no object reference variables, then there is no way to know where
in memory an object is located

e Java handles this for you automatically
e the JVM periodically invokes automatic garbage collection while it is running

e all the memory that is allocated to an application but is not being used is “restored” so
that it can be re-allocated to the application later

e if you want to perform some garbage collection on a class that you create yourself, then
you would write a method called f i nal i ze() and whenever the automatic garbage
collection was invoked and cleaned up an object of your class type, then your
finalize() method would be called

€s1007-spring2002-sklar-lect13 14

N

references (9).

e When you pass objects as parameters (arguments) to a method, a reference is passed, not
the actual object

e SO be careful about what changes!
e here’s an example using three classes:

— Num
— Par anet er Test er
—ex13b

€s1007-spring2002-sklar-lect13 15

N

references (10).

public class Num {
private int val ue;

public Nun{ int update) {
val ue = updat e;
} /'l end of constructor

public void setValue(int update) {
val ue = updat e;
} /1l end of setVal ue()

public String toString() ({
return val ue+"";
} /1 end of toString()

} // end of Num cl ass

€s1007-spring2002-sklar-lect13

16

references (11).

public class ParaneterTester {

public void changeValues(int f1, Numf2, Numf3) {
Systemout.println("start call:\t"+
"PA="H 1+ 2="+f 24"\t f3="+f 3);
f1 = 999;
f2.setVal ue(888);
f3 = new Num (777);

Systemout.println("end call:\t"+
"fl1="4f 1\t 2="+H 2+ \ t f3="+f 3);

} /'l end of changeVal ues()

} /'l end of class ParaneterTester

€s1007-spring2002-sklar-lect13 17

references (12).

public class ex13b {

public static void main(String[] args) {
Par anet er Tester tester = new ParaneterTester();
int al = 111,
Num a2 = new Num(222);
Num a3 = new Num(333);
Systemout.printin("before call:\t"+
"al="+al+"\ta2="+a2+"\ta3="+a3);
t est er. changeVal ues(al, a2, a3);
Systemout.printin("after <call:\t"+
"al="+al+"\taz2="+a2+"\ta3="+a3);
} // end of main()

} I/ end of class ex13b

€s1007-spring2002-sklar-lect13 18

N

e sample output:

before call:

start call:
end call:

after call:

€s1007-spring2002-sklar-lect13

references (13).

al=111
f1=111
f 1=999
al=111

a2=222
f2=222
f2=888
a2=888

a3=333
f 3=333
f3=777
a3=333

19

N

static modifier (1).

e an object reference variable is also called an instance variable
e because we instantiate the object in order to use it

e some members in some classes are static which means that they don’t have to be
instantiated to be used

e but static methods can only refer to local variables or to other static members
e (o back to the earlier example ex13Db

e if we put the changeVal ues() method inside the ex13b class file, then we’d need to
Instantiate an instance of the ex13b class in order to access that method

€s1007-spring2002-sklar-lect13 20

static modifier (2).

public class exl1l3c {

public static void main(String[] args) {
ex1l3c tester = new exl1l3c();
int al = 111,
Num a2 = new Num(222);
Num a3 = new Num(333);
Systemout.printin("before call:\t"+
"al="+al+"\ta2="+a2+"\ta3="+a3);
t ester. changeVal ues(al, a2, a3);
Systemout.printin("after <call:\t"+
"al="+al+"\taz2="+a2+"\ta3="+a3);
} // end of main()

public void changeValues(int f1, Numf2, Numf3) {

Systemout.println("start call:\t"+
"f1="+f 1+"\tf2="+F 2+"\tf3="+f 3);

¢s1007-spri ng2002-skl ar-1ect13

21

f1 = 999;
f2.setVal ue(888);
f3 = new Num (777);
Systemout.printin("end call:\t"+
"fA="H LNt 2="+Hf 24"\t 3="+f 3);

} I/ end of changeVal ues()

} /'l end of class ex1l3c

€s1007-spring2002-sklar-lect13

22

N

comparing objects (1).

e comparing two Java objects is tricky
e you have to be careful of what you are comparing:

— is it the value of some member(s) of the class?
— or is it the reference?

e uUsing == compares the references
e Which is not the same as comparing the values of member(s) of the class

e here’s an example from the Coi n class:

— comparing the value of the f ace member of two coins:

if (pocket[O0].getFace() == pocket[1l].getFace()) {
Systemout.println("coins 0 and 1 have the sane face val ue");

}
— versus comparing the references:

if (pocket[0O] == pocket[1l]) {
Systemout.println("coins 0 and 1 are the sanme");

}

e many classes have a method called conpar eTo() to compare the value of member(s)
of the class

€s1007-spring2002-sklar-lect13 23

comparing objects (2).

e in order to compare the value of two St r i ngs, we need to use the method
public int conpareTo(String str)
fromthe j ava. | ang. Stri ng class

e this method does a lexical comparison of its St r i ng argument with the current object
(i.e., its instantiated value)

e itreturnsani nt as follows:
If the current object... then the method returns

IS the same textas st r 0
comes lexically beforestr |ani nt <0 (e.g.,-1)
comes lexically afterstr |ani nt >0 (e.g., +1)

e using == to compare two St r i ngs compares their addresses, NOT the values of the text
they store

e this is the same for comparing any two objects in Java

e most classes define a conpar eTo() method, just as most classes define a
toString() method

€s1007-spring2002-sklar-lect13 24

N

N

comparing objects (3).

e for example:

public class ex13d {
public static void main(String[] args) {
String sl new String("hello");
String s2 new String("hello");
Systemout.println("sl=["+s1+"]");
Systemout.println("s2=["+s2+"]");
Systemout.println("(sl ==s2) =" + (sl ==5s2));
Systemout.println("sl.conpareTo(s2)="+sl. conpareTo(s2));
Systemout.println("s2.conpareTo(sl)="+s2. conpareTo(sl));
} /1 end of main()
} /1 end of class ex13d

e sample output:

sl=[hel | 0]
s2=[hel | 0]
(sl == s2) = fal se
sl. conpareTo(s2)=0
s2. conpareTo(sl) =0

€s1007-spring2002-sklar-lect13

25

