
� �

CS1007 lecture #14 notes

thu 24 oct 2002

� news

– exams will be back on tuesday

� wrapper classes

� inheritance

� this keyword

� reading: ch 7

cs1007-spring2002-sklar-lect14 1� �

� �

classes.

� classes are the block around which Java is organized

� classes are composed of

– data elements:

� variables — i.e., their values can change during the execution of a program

� constants — i.e., their values CANNOT change during the execution of a program

� like variables, they have a type, a name and a value

– methods

� modules that perform actions on the data elements

� like variables, they have a type, a name and a value

� unlike variables, the type can be void, which means that they don’t really have a
value

� constructors — special types of methods used to set up an object before it is used
for the first time

� groups of related classes are organized into packages

cs1007-spring2002-sklar-lect14 2� �

� �

the java.lang package.

� the superclass for all Java classes, at the top of the hierarchy

– java.lang.Object

� wrappers around primitive data types; classes that define numeric limits and contain
conversion methods

– java.lang.Boolean

– java.lang.Character

– java.lang.Byte, java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float, java.lang.Double

� string handling functions

– java.lang.String

� also includes java.lang.Math

cs1007-spring2002-sklar-lect14 3� �

� �

example wrapper class.
� java.lang.Integer class

� it is a wrapper around the int primitive data type

� it provides methods for converting between int and String

� a constructor:
public Integer(int value);

� some constants:
public static final int MIN VALUE
public static final int MAX VALUE

� some methods:
public int intValue();
public static String toString(int i);
public static Integer valueOf(String s);

� other wrapper classes are similar — see on-line documentation

cs1007-spring2002-sklar-lect14 4� �

� �

java.lang.String class.

� this is a special wrapper class

� it wraps around char[]

� some constructors:
public String();
public String(String value);

� some methods:
public char[] to CharArray();
public static String valueOf(int i);
public int charAt(int index);
public int compareTo(String anotherString);
public int length();

cs1007-spring2002-sklar-lect14 5� �

� �

inheritance.

� inheritance is the means by which classes are created out of other classes

� it is a cornerstone of object-oriented programming

� the idea is to create classes that can be re-used from one application to another

� classes contain data objects and methods

� you want to be able to change the data type of the data objects and still be able to use the
same methods

� you also want to be able to change the flavor of what the methods do

cs1007-spring2002-sklar-lect14 6� �

� �

inheritance tree (1).

� think of the most primitive Java class, Object as being at the root of the inheritance tree

� all other classes are “children” or subclasses of that class

� here is an example of the inheritance tree for Integer:

Object
|

Number
|

Integer

� Integer is a subclass of Number and Number is a subclass of Object

� Integer is also a subclass of Object

� conversely a parent is also called a superclass

� Object is a superclass of Number and Number is a superclass of Integer

� Object is also a superclass of Integer

� Object is also called the base class of Integer

cs1007-spring2002-sklar-lect14 7� �

� �

inheritance tree (2).
� as you move DOWN the inheritance tree from the root to the leaf, you are extending

subclasses from parent classes

– parent classes are also called superclasses

– or base classes

– children classes are derived from their parents

� as you move UP the inheritance tree from the leaf to the root, you can say that each
subclass is a more specific version of its parent

� this is known as the is-a relationship between a subclass and the parent class that the
child extends

� the keyword this is used to specify a member of the current or immediate class

cs1007-spring2002-sklar-lect14 8� �

� �

overriding methods.

� when you extend a class, you can override methods defined in the parent class by
defining them again in the child (and giving the child version different behavior)

� the rule is: the version of any method that is invoked is the definition closest to the leaf of
the tree

� if you want to refer to the version of the method in a class’s superclass, you use the
super reference

cs1007-spring2002-sklar-lect14 9� �

� �

overloading methods.

� in addition to changing precisely what a method does, you can also change the
arguments to that method

� this is very useful if you are changing the data type of data objects defined in the class

� you can create a new version of a method which has different arguments from the version
of the method defined in the class’s superclass

� this is what happens when we use different versions of the println() method:

int i = 5;
String s = "hello";
System.out.println(i);
System.out.println(s);

cs1007-spring2002-sklar-lect14 10� �

� �

other terminology...

� polymorphism

– “having many forms”

– lets us use different implementations of a single class

– we talked about this in relation to interfaces

– a polymorphic reference can refer to different types of objects at different times

� abstract class

– represents a generic concept in a class hierarchy

– cannot be instantiated — can only be extended

cs1007-spring2002-sklar-lect14 11� �

