e N (7 R
CS1007 lecture #22 notes recursion.
tue 26 nov 2002 o recursion is defining something in terms of itself
o there are many examples in nature
® news . .
) o and in mathematics
e more recursion . .
] ) e and in computer graphics,
* recursive searching (e.g., the Koch snowflake in our snowflake example from the GUI lectures)
e reading: ch 12.7-12.12
¢s1007-fall 2002-sklar-lect22 €s1007-fall 2002-sklar-lect22
o _J _J
- N I
power function. hereit isin a Java method.
o power is defined recursively: epublic int power ( int x, inty) {
ify==0, 2v=1 if ( =0) {
=LKify==1, 2v=1z return( 1);
otherwise, z =  z¥~! }
else if (y =1) {
return( x );
}
el se {
return( x * power( x, y-1));
}
} /1 end of power() nethod
o Notice that power () calls itself!
e You can do this with any method except main()
e BUT beware of infinite loops!!!
e You have to know when and how to stop the recursion — what is the stopping condition
¢s1007-fall2002-sklar-lect22 €s1007-fall 2002-sklar-lect22
- AN J




e N (7 R
let’'swalk through power ( 2, 4) . stacks.
call X |y | return value o the computer uses a data structure called a stack to keep track of what is going on
1| power(2,4) |2 |4 | 2* power(2,3) o think of a stack like a stack of plates
e 2 |power(2,3) | 2|3|2™* power(2,2)
3 power(2,2) |22 |2 * power(2,1) e you can only take off the top one
4 | power(2,1) (2|12 e you can only add more plates to the top
o the first is the original call o this corresponds to the two basic stack operations:
o followed by three recursive calls — push — putting something onto the stack
— pop — taking something off of the stack
e when each recursive call is made, power() is pushed onto the stack
e when each return is made, the corresponding power() is popped off of the stack
¢s1007-fall 2002-sklar-lect22 €s1007-fall 2002-sklar-lect22
- AN _/
- N I
another example: factorial. hereit isin a Java method.
o factorial is defined recursively: epublic int factorial ( int N) {
ifN==1, Nl=1 if (N==1) {
Nl=
otherwise, N!= N x (N —1)! return( 1);
o (for N > 0) }
el se {
return( N* factorial( N1));
} /1 end of factorial () method
¢s1007-fall2002-sklar-lect22 €s1007-fall 2002-sklar-lect22
- AN J




e N (7 R
recursive iteration. }
el se {
Systemout.println();
public class ex22a {
} /1 end of printDice() method
Random r = new Random();
Dice[] dice = new Dice[5]; } /1 end of ex22a class
public static void main( String[] args ) {
ex22a ex = new ex22a();
for (int i=0; i<5; i++ ) {
ex.dice[i] = new Dice();
}
ex.printDice( 0);
} // end of main() nethod
public void printDice( int index ) {
if (index < dice.length ) {
Systemout.print( dice[index].getValue() +" " );
printDice( index+l );
€s1007-f al | 2002- skl ar - | ect 22 9 €s1007-fall 2002-sklar-lect22 10
o _J _J
e N I
normal iteration. back to recursive iteration.
e where normal iteration looks like this: e in the recursive version, each call is like one iteration inside the for loop in the iterative
. . . ) version
public void printDice() { _ call index | output next call
for ( int index=0; index<dice.length; index++) { 1] printDice(0) |0 | dice[0].getValue() | printDice(1)
Systemout. print( dice[index].getValue() + ) 2 | printDice(1) | 1 dice[1].getValue() | printDice(2)
} . ) 3| printDice(2) | 2 dice[2].getValue() | printDice(3)
System out. pri nt! n(0); 4 | printDice(3) |3 dice[3].getValue() | printDice(4)
} /1 end of printDice() method 5 | printDice(4) | 4 dice[4].getValue() | printDice(5)
6 | printDice(5) | 5 newline _
s1007-fall 2002-sklar-lect22 1 ¢s1007-fall2002-sklar-lect22 12
o O\ %




e N (7 R
more on recursion. search.
o With recursion, each time the method is invoked, one step is taken towards the resolution o Often, when you have data stored in an array, you need to locate an element within that
of the task the method is meant to complete. array.
o Before each step is executed, the state of the task being completed is somewhere in the e This is called searching.
middle of being completed. o Typically, you search for a key value (simply the value you are looking for) and return its
o After each step, the state of the task is one step closer to completion. index (the location of the value in the array)
o In the example above, each time printDice(q) is called, the array is printed from the i-th e As with sorting, there are many searching algorithms.
element to the end of the array. o We’ll study the following:
e In the power(z, y) example, each time the method is called, power is computed for each _ linear search
2, in terms of the previous z¥~1. . .
x standard linear search, on sorted or unsorted data (last time)
e Inthe factorial(N) example, each time the method is called, factorial is computed for + modified linear search, on sorted data only (last time)
each N, in terms of the previous N — 1. .
— binary search
 One classic example is “Towers of Hanoi”. In each turn or iteration, one disk is moved * iterative binary search, on sorted data only (review today)
from one towgr Fo anothgr. At each p0|nt_(|.e., at_the stsflrt of eaclj recursive call), the state + recursive binary search, on sorted data only (today)
of the towers is in the middle of completion, until the final solution is reached.
¢s1007-fall 2002-sklar-lect22 13 €s1007-fall 2002-sklar-lect22 14
o 2N _J
- N I
binary search (1). binary search (2).
e Binary search is much more efficient than linear search, ON A SORTED ARRAY. (It public int binarySearch( int key ) {
CANNOT be used on an unsorted array!) int lo =0, hi =dice.length-1, md;
o |t takes the strategy of continually dividing the search space into two halves, hence the whi I € (_ l'o <= hi . ) A .
name binary. Say you are searching something very large, like the phone book. If you m d=(I 8_+ _h' ) / 2;
are looking for one name (e.g., “Gilligan™), it is extremely slow and inefficient to start if ( key == di C?[ m d] . get Val ue() ) {
with the A’s and look at each name one at a time, stopping only when you find return( md );
“Gilligan”. But this is what linear search does. Binary search acts much like you’d act if . . .
you were looking up “Gilligan” in the phone book. el ;e if '(dkey1< dice[md].getValue() ) {
i =md - 1;
— You’d open the book somewhere in the middle, then determine if “Gilligan” appears }
before or after the page you have opened to. el se {
- If “Gilligan” appears after the page you’ve selected, then you’d open the book to a lo=md + 1;
later page. }
— If “Gilligan” appears before the page you’ve selected, then you’d open the book to an } /1 end while
earlier page. return( -1 );
— You’d repeat this process until you found the entry you are looking for. } /1 end of binarySearch() nethod
¢s1007-fall2002-sklar-lect22 15 €s1007-fall 2002-sklar-lect22 16
- AN J




- N
binary search (3). recursive binary search (1).
public int binarySearchV( int key ) { public int recursiveBinarySearch( int key, int lo, int hi ) {
int lo =0, hi = dice.size()-1, md; if (lo<=hi) {
while (1o <=hi ) { int mid=(lo+hi)/ 2
md=(lo+hi)/ 2 if ( key == dice[nid].getValue() ) {
Dice d = (Dice)dice.elenentAt( md ); return( mid);
if ( key == d.getValue() ) { }
return( nmid); else if ( key < dice[nid].getValue() ) {
} return( recursiveBinarySearch( key, lo, md-1));
else if ( key < d.getValue() ) { }
hi =md - 1; el se {
} return( recursiveBinarySearch( key, mid+1l, hi ));
el se { }
lo=nid + 1; }
} ‘ el se {
} /1 end while return( _1)’
return( -1 ); }
} /1 end of binarySearchV() method } /1 end of recursiveBinarySearch() nethod
¢s1007-fall 2002-sklar-lect22 17 €s1007-fall 2002-sklar-lect22 18
o _J _J
- N I
o invoke with: recursive binary search (2).
int i = recursiveBinarySearch( key, 0,dice.length );
public int recursiveBinarySearchV( int key, int lo, int hi ) {
if (lo<=hi) {
int md=(lo+hi )/ 2
if ( key == ((Dice)dice.elenentAt( md )).getValue() ) {
return( md);
}
else if ( key < ((Dice)dice.elementAt( md )).getValue() ) {
return( recursiveBi narySearchV( key, lo, md-1));
}
el se {
return( recursiveBinarySearchV( key, md+1, hi ));
}
}
el se {
return( -1 );
}
} /1 end of recursiveBinarySearchV() method
¢s1007-fall2002-sklar-lect22 19 €s1007-fall 2002-sklar-lect22 20
- AN J




o

o invoke with:
int i = recursiveBinarySearch( key,0,dice.length );

©s1007-fall 2002-sklar-lect22

21




