
� �

CS1007 lecture #22 notes

tue 26 nov 2002

� news

� more recursion

� recursive searching

� reading: ch 12.7-12.12

cs1007-fall2002-sklar-lect22 1� �
� �

recursion.

� recursion is defining something in terms of itself

� there are many examples in nature

� and in mathematics

� and in computer graphics,
(e.g., the Koch snowflake in our snowflake example from the GUI lectures)

cs1007-fall2002-sklar-lect22 2� �

� �

power function.

� power is defined recursively:

� ���
	�

�

�
� �� � � ��� � �� �

� �� � � � � � �� �

� � ���� �� � � � �� � � � �� �

cs1007-fall2002-sklar-lect22 3� �
� �

here it is in a Java method.
� public int power (int x, int y) {

if (y == 0) {
return(1);

}
else if (y == 1) {

return(x);
}
else {

return(x * power(x, y-1));
}

} // end of power() method

� Notice that power() calls itself!

� You can do this with any method except main()

� BUT beware of infinite loops!!!

� You have to know when and how to stop the recursion — what is the stopping condition

cs1007-fall2002-sklar-lect22 4� �

� �

let’s walk through power(2,4).

�

call x y return value

1 power(2,4) 2 4 2 * power(2,3)
2 power(2,3) 2 3 2 * power(2,2)
3 power(2,2) 2 2 2 * power(2,1)
4 power(2,1) 2 1 2

� the first is the original call

� followed by three recursive calls

cs1007-fall2002-sklar-lect22 5� �
� �

stacks.

� the computer uses a data structure called a stack to keep track of what is going on

� think of a stack like a stack of plates

� you can only take off the top one

� you can only add more plates to the top

� this corresponds to the two basic stack operations:

– push — putting something onto the stack

– pop — taking something off of the stack

� when each recursive call is made, power() is pushed onto the stack

� when each return is made, the corresponding power() is popped off of the stack

cs1007-fall2002-sklar-lect22 6� �

� �

another example: factorial.

� factorial is defined recursively:

� � �
	
�

�
� � �� � � � � � � �

� � ���� �� � � � � � � � � ��� � � �

� (for

�� �

)

cs1007-fall2002-sklar-lect22 7� �
� �

here it is in a Java method.
� public int factorial (int N) {

if (N == 1) {
return(1);

}
else {

return(N * factorial(N-1));
}

} // end of factorial() method

cs1007-fall2002-sklar-lect22 8� �

� �

recursive iteration.

public class ex22a {

Random r = new Random();
Dice[] dice = new Dice[5];

public static void main(String[] args) {
ex22a ex = new ex22a();
for (int i=0; i<5; i++) {
ex.dice[i] = new Dice();

}
ex.printDice(0);

} // end of main() method

public void printDice(int index) {
if (index < dice.length) {
System.out.print(dice[index].getValue() + " ");
printDice(index+1);

cs1007-fall2002-sklar-lect22 9� �
� �

}
else {
System.out.println();

}
} // end of printDice() method

} // end of ex22a class

cs1007-fall2002-sklar-lect22 10� �

� �

normal iteration.

� where normal iteration looks like this:

public void printDice() {
for (int index=0; index<dice.length; index++) {
System.out.print(dice[index].getValue() + " ");

}
System.out.println();

} // end of printDice() method

cs1007-fall2002-sklar-lect22 11� �
� �

back to recursive iteration.
� in the recursive version, each call is like one iteration inside the for loop in the iterative

version
call index output next call

1 printDice(0) 0 dice[0].getValue() printDice(1)
2 printDice(1) 1 dice[1].getValue() printDice(2)
3 printDice(2) 2 dice[2].getValue() printDice(3)
4 printDice(3) 3 dice[3].getValue() printDice(4)
5 printDice(4) 4 dice[4].getValue() printDice(5)
6 printDice(5) 5 newline — —

cs1007-fall2002-sklar-lect22 12� �

� �

more on recursion.

� With recursion, each time the method is invoked, one step is taken towards the resolution
of the task the method is meant to complete.

� Before each step is executed, the state of the task being completed is somewhere in the
middle of being completed.

� After each step, the state of the task is one step closer to completion.

� In the example above, each time �� �� � � ��� � � �

is called, the array is printed from the

�

-th
element to the end of the array.

� In the �� 	� � � �� � �

example, each time the method is called, power is computed for each� �, in terms of the previous � �� � .

� In the

� � � � � � � � � � �

example, each time the method is called, factorial is computed for
each

�

, in terms of the previous

��� �

.

� One classic example is “Towers of Hanoi”. In each turn or iteration, one disk is moved
from one tower to another. At each point (i.e., at the start of each recursive call), the state
of the towers is in the middle of completion, until the final solution is reached.

cs1007-fall2002-sklar-lect22 13� �
� �

search.

� Often, when you have data stored in an array, you need to locate an element within that
array.

� This is called searching.

� Typically, you search for a key value (simply the value you are looking for) and return its
index (the location of the value in the array)

� As with sorting, there are many searching algorithms.

� We’ll study the following:

– linear search� standard linear search, on sorted or unsorted data (last time)� modified linear search, on sorted data only (last time)

– binary search� iterative binary search, on sorted data only (review today)� recursive binary search, on sorted data only (today)

cs1007-fall2002-sklar-lect22 14� �

� �

binary search (1).

� Binary search is much more efficient than linear search, ON A SORTED ARRAY. (It
CANNOT be used on an unsorted array!)

� It takes the strategy of continually dividing the search space into two halves, hence the
name binary. Say you are searching something very large, like the phone book. If you
are looking for one name (e.g., “Gilligan”), it is extremely slow and inefficient to start
with the A’s and look at each name one at a time, stopping only when you find
“Gilligan”. But this is what linear search does. Binary search acts much like you’d act if
you were looking up “Gilligan” in the phone book.

– You’d open the book somewhere in the middle, then determine if “Gilligan” appears
before or after the page you have opened to.

– If “Gilligan” appears after the page you’ve selected, then you’d open the book to a
later page.

– If “Gilligan” appears before the page you’ve selected, then you’d open the book to an
earlier page.

– You’d repeat this process until you found the entry you are looking for.

cs1007-fall2002-sklar-lect22 15� �
� �

binary search (2).

public int binarySearch(int key) {
int lo = 0, hi = dice.length-1, mid;
while (lo <= hi) {
mid = (lo + hi) / 2;
if (key == dice[mid].getValue()) {
return(mid);

}
else if (key < dice[mid].getValue()) {
hi = mid - 1;

}
else {
lo = mid + 1;

}
} // end while
return(-1);

} // end of binarySearch() method

cs1007-fall2002-sklar-lect22 16� �

� �

binary search (3).

public int binarySearchV(int key) {
int lo = 0, hi = dice.size()-1, mid;
while (lo <= hi) {
mid = (lo + hi) / 2;
Dice d = (Dice)dice.elementAt(mid);
if (key == d.getValue()) {
return(mid);

}
else if (key < d.getValue()) {
hi = mid - 1;

}
else {
lo = mid + 1;

}
} // end while
return(-1);

} // end of binarySearchV() method

cs1007-fall2002-sklar-lect22 17� �
� �

recursive binary search (1).

public int recursiveBinarySearch(int key, int lo, int hi) {
if (lo <= hi) {
int mid = (lo + hi) / 2;
if (key == dice[mid].getValue()) {
return(mid);

}
else if (key < dice[mid].getValue()) {
return(recursiveBinarySearch(key, lo, mid-1));

}
else {
return(recursiveBinarySearch(key, mid+1, hi));

}
}
else {
return(-1);

}
} // end of recursiveBinarySearch() method

cs1007-fall2002-sklar-lect22 18� �

� �

� invoke with:
int i = recursiveBinarySearch(key,0,dice.length);

cs1007-fall2002-sklar-lect22 19� �
� �

recursive binary search (2).

public int recursiveBinarySearchV(int key, int lo, int hi) {
if (lo <= hi) {
int mid = (lo + hi) / 2;
if (key == ((Dice)dice.elementAt(mid)).getValue()) {
return(mid);

}
else if (key < ((Dice)dice.elementAt(mid)).getValue()) {
return(recursiveBinarySearchV(key, lo, mid-1));

}
else {
return(recursiveBinarySearchV(key, mid+1, hi));

}
}
else {
return(-1);

}
} // end of recursiveBinarySearchV() method

cs1007-fall2002-sklar-lect22 20� �

� �

� invoke with:
int i = recursiveBinarySearch(key,0,dice.length);

cs1007-fall2002-sklar-lect22 21� �

