
exec(2) exec(2)

NAME
exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS
#include <unistd.h>

int execl(const char *path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle (const char *path,char *const arg0[], . . . , const char *argn,
char * /*NULL*/, char *const envp[]);

int execve (const char *path, char *const argv[], char *const envp[]);

int execlp (const char * file, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char * file, char *const argv[]);

MT-LEVEL
execle() and execve() are Async-Signal-Safe

DESCRIPTION
exec() in all its forms overlays a new process image on an old process. The new process image is con-
structed from an ordinary, executable file. This file is either an executable object file, or a file of data for an
interpreter. There can be no return from a successful exec() because the calling process image is overlaid
by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When an interpreter file is
exec’d, the system execs the specified interpreter. The pathname specified in the interpreter file is passed as
arg0 to the interpreter. If arg was specified in the interpreter file, it is passed as arg1 to the interpreter. The
remaining arguments to the interpreter are arg0 through argn of the originally exec’d file.

When a C program is executed, it is called as follows:

int main (int argc, char ∗argv[], char ∗envp[]);

where argc is the argument count, argv is an array of character pointers to the arguments themselves, and
envp is an array of character pointers to the environment strings. As indicated, argc is at least one, and the
first member of the array points to a string containing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. If file does not contain a slash character, the path prefix for this file is
obtained by a search of the directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the new process file is not an executable object file, exe-
clp() and execvp() use the contents of that file as standard input to the shell.

Solaris exec() uses /usr/bin/sh (see sh(1)).

XPG4 exec() uses the XPG4-compliant shell /usr/bin/ksh (see ksh(1)).

The arguments arg0, . . ., argn point to null-terminated character strings. These strings constitute the argu-
ment list available to the new process image. Conventionally at least arg0 should be present. It will
become the name of the process, as displayed by the ps command. arg0 points to a string that is the same
as path (or the last component of path). The list of argument strings is terminated by a (char ∗)0 argument.

argv is an array of character pointers to null-terminated strings. These strings constitute the argument list
available to the new process image. By convention, argv must have at least one member, and it should
point to a string that is the same as path (or its last component). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute the environment
for the new process image. envp is terminated by a null pointer. For execl(), execv(), execvp(), and exe-
clp(), the C run-time start-off routine places a pointer to the environment of the calling process in the

17 Jul 1995 1

exec(2) exec(2)

global object extern char ∗∗environ, and it is used to pass the environment of the calling process to the
new process.

File descriptors open in the calling process remain open in the new process, except for those whose
close-on-exec flag is set; (see fcntl(2)). For those file descriptors that remain open, the file pointer is
unchanged.

Signals that are being caught by the calling process are set to the default disposition in the new process
image (see signal(3C)). Otherwise, the new process image inherits the signal dispositions of the calling
process.

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec() sets the effective user ID of
the new process to the owner ID of the new process file. Similarly, if the set-group-ID mode bit of the new
process file is set, the effective group ID of the new process is set to the group ID of the new process file.
The real user ID and real group ID of the new process remain the same as those of the calling process.

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID bits will be honored when the
process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached to the new process (see
shmop(2)). Memory mappings in the calling process are unmapped before the new process begins execu-
tion (see mmap(2)).

Profiling is disabled for the new process; see profil(2).

Timers created by timer_create(3R) are deleted before the new process begins execution.

Any outstanding asynchronous I/O operations may be cancelled.

The new process also inherits the following attributes from the calling process:

nice value (see nice(2))
scheduler class and priority (see priocntl(2))
process ID
parent process ID
process group ID
supplementary group IDs
semadj values (see semop(2))
session ID (see exit(2) and signal(3C))
trace flag (see ptrace(2) request 0)
time left until an alarm (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
resource limits (see getrlimit(2))
utime, stime, cutime, and cstime (see times(2))
file-locks (see fcntl(2) and lockf(3C))
controlling terminal
process signal mask (see sigprocmask(2))
pending signals (see sigpending(2))

Upon successful completion, exec() marks for update the st_atime field of the file, unless the file is on a
read-only file system. Should the exec() succeed, the process image file is considered to have been open()
-ed. The corresponding close() is considered to occur at a time after this open, but before process termina-
tion or successful completion of a subsequent call to exec().

RETURN VALUES
If exec() returns to the calling process, an error has occurred; the return value is −1 and errno is set to indi-
cate the error.

17 Jul 1995 2

exec(2) exec(2)

ERRORS
exec() will fail and return to the calling process if one or more of the following are true:

E2BIG The number of bytes in the new process’s argument list is greater than the system-
imposed limit of ARG_MAX bytes. The argument list limit is sum of the size of
the argument list plus the size of the environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new process file’s path
prefix.

EACCES The new process file is not an ordinary file.

EACCES The new process file mode denies execute permission.

EAGAIN Total amount of system memory available when reading using raw I/O is tem-
porarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the exec() function.

ELOOP Too many symbolic links were encountered in translating path or file.

EMULTIHOP Components of path require hopping to multiple remote machines and the file sys-
tem type does not allow it.

ENAMETOOLONG The length of the file or path argument exceeds {PATH_MAX}, or the length of a
file or path component exceeds {NAME_MAX} while {_POSIX_NO_TRUNC}
is in effect.

ENOENT One or more components of the new process path name of the file do not exist or
is a null pathname.

ENOEXEC The exec() is not an execlp() or execvp(), and the new process file has the appro-
priate access permission but an invalid magic number in its header.

ENOLINK path points to a remote machine and the link to that machine is no longer active.

ENOMEM The new process requires more memory than is allowed by the limit imposed by
getrlimit(), see brk(2). MAXMEM.

ENOTDIR A component of the new process path of the file prefix is not a directory.

SEE ALSO
ksh(1), ps(1), sh(1), alarm(2), brk(2), chmod(2), exit(2), fcntl(2), fork(2), getrlimit(2), mmap(2),
nice(2), priocntl(2), profil(2), ptrace(2), semop(2), shmop(2), signal(3C), sigpending(2), sigproc-
mask(2), times(2), umask(2), lockf(3C), timer_create(3R), system(3S), a.out(4), environ(5), xpg4(5)

WARNINGS
If a program is setuid to a user ID other than the super-user, and the program is executed when the real user
ID is super-user, then the program has some of the powers of a super-user as well.

17 Jul 1995 3

