
MAKE(1L) LOCAL USER COMMANDS MAKE(1L)

NAME
make - GNU make utility to maintain groups of programs

SYNOPSIS
make [-f _m_a_k_e_f_i_l_e] [option] ... target ...

WARNING
This man page is an extract of the documentation of _G_N_U _m_a_k_e
. It is updated only occasionally, because the GNU project
does not use nroff. For complete, current documentation,
refer to the Info file make.info which is made from the Tex-
info source file make.texinfo.

DESCRIPTION
The purpose of the _m_a_k_e utility is to determine automati-
cally which pieces of a large program need to be recompiled,
and issue the commands to recompile them. The manual
describes the GNU implementation of _m_a_k_e, which was written
by Richard Stallman and Roland McGrath. Our examples show C
programs, since they are most common, but you can use _m_a_k_e
with any programming language whose compiler can be run with
a shell command. In fact, _m_a_k_e is not limited to programs.
You can use it to describe any task where some files must be
updated automatically from others whenever the others
change.

To prepare to use _m_a_k_e, you must write a file called the
_m_a_k_e_f_i_l_e that describes the relationships among files in
your program, and the states the commands for updating each
file. In a program, typically the executable file is
updated from object files, which are in turn made by compil-
ing source files.

Once a suitable makefile exists, each time you change some
source files, this simple shell command:

make

suffices to perform all necessary recompilations. The _m_a_k_e
program uses the makefile data base and the last-
modification times of the files to decide which of the files
need to be updated. For each of those files, it issues the
commands recorded in the data base.

_m_a_k_e executes commands in the _m_a_k_e_f_i_l_e to update one or more
target _n_a_m_e_s, where _n_a_m_e is typically a program. If no -f
option is present, _m_a_k_e will look for the makefiles _G_N_U_-
_m_a_k_e_f_i_l_e, _m_a_k_e_f_i_l_e, and _M_a_k_e_f_i_l_e, in that order.

Normally you should call your makefile either _m_a_k_e_f_i_l_e or
_M_a_k_e_f_i_l_e. (We recommend _M_a_k_e_f_i_l_e because it appears prom-
inently near the beginning of a directory listing, right

GNU Last change: 22 August 1989 1

MAKE(1L) LOCAL USER COMMANDS MAKE(1L)

near other important files such as _R_E_A_D_M_E.) The first name
checked, _G_N_U_m_a_k_e_f_i_l_e, is not recommended for most makefiles.
You should use this name if you have a makefile that is
specific to GNU _m_a_k_e, and will not be understood by other
versions of _m_a_k_e. If _m_a_k_e_f_i_l_e is ‘-’, the standard input is
read.

_m_a_k_e updates a target if it depends on prerequisite files
that have been modified since the target was last modified,
or if the target does not exist.

OPTIONS
-b

-m These options are ignored for compatibility with other
versions of _m_a_k_e.

-C _d_i_r
Change to directory _d_i_r before reading the makefiles or
doing anything else. If multiple -C options are speci-
fied, each is interpreted relative to the previous one:
- C / -C etc is equivalent to -C /etc. This is typi-

cally used with recursive invocations of _m_a_k_e.

-d Print debugging information in addition to normal pro-
cessing. The debugging information says which files
are being considered for remaking, which file-times are
being compared and with what results, which files actu-
ally need to be remade, which implicit rules are con-
sidered and which are applied---everything interesting
about how _m_a_k_e decides what to do.

-e Give variables taken from the environment precedence
over variables from makefiles.

-f _f_i_l_e
Use _f_i_l_e as a makefile.

-i Ignore all errors in commands executed to remake
files.

-I _d_i_r
Specifies a directory _d_i_r to search for included
makefiles. If several -I options are used to specify
several directories, the directories are searched in
the order specified. Unlike the arguments to other
flags of _m_a_k_e, directories given with -I flags may come
directly after the flag: -I_d_i_r is allowed, as well as
-I _d_i_r. This syntax is allowed for compatibility with
the C preprocessor’s -I flag.

-j _j_o_b_s

GNU Last change: 22 August 1989 2

MAKE(1L) LOCAL USER COMMANDS MAKE(1L)

Specifies the number of jobs (commands) to run simul-
taneously. If there is more than one -j option, the
last one is effective. If the - j option is given
without an argument, _m_a_k_e will not limit the number of
jobs that can run simultaneously.

-k Continue as much as possible after an error. While
the target that failed, and those that depend on it,
cannot be remade, the other dependencies of these tar-
gets can be processed all the same.

-l

-l _l_o_a_d
Specifies that no new jobs (commands) should be started
if there are others jobs running and the load average
is at least _l_o_a_d (a floating-point number). With no
argument, removes a previous load limit.

-n Print the commands that would be executed, but do not
execute them.

-o _f_i_l_e
Do not remake the file _f_i_l_e even if it is older than
its dependencies, and do not remake anything on account
of changes in _f_i_l_e. Essentially the file is treated as
very old and its rules are ignored.

-p Print the data base (rules and variable values) that
results from reading the makefiles; then execute as
usual or as otherwise specified. This also prints the
version information given by the -v switch (see below).
To print the data base without trying to remake any
files, use make -p -f/_d_e_v/_n_u_l_l.

-q ‘‘Question mode’’. Do not run any commands, or print
anything; just return an exit status that is zero if
the specified targets are already up to date, nonzero
otherwise.

-r Eliminate use of the built-in implicit rules. Also
clear out the default list of suffixes for suffix
rules.

-s Silent operation; do not print the commands as they
are executed.

-S Cancel the effect of the -k option. This is never
necessary except in a recursive _m_a_k_e where -k might be
inherited from the top-level _m_a_k_e via MAKEFLAGS or if
you set -k in MAKEFLAGS in your environment.

GNU Last change: 22 August 1989 3

MAKE(1L) LOCAL USER COMMANDS MAKE(1L)

-t Touch files (mark them up to date without really
changing them) instead of running their commands. This
is used to pretend that the commands were done, in
order to fool future invocations of _m_a_k_e.

-v Print the version of the _m_a_k_e program plus a copy-
right, a list of authors and a notice that there is no
warranty.

-w Print a message containing the working directory
before and after other processing. This may be useful
for tracking down errors from complicated nests of
recursive _m_a_k_e commands.

-W _f_i_l_e
Pretend that the target _f_i_l_e has just been modified.
When used with the -n flag, this shows you what would
happen if you were to modify that file. Without -n, it
is almost the same as running a _t_o_u_c_h command on the
given file before running _m_a_k_e, except that the modifi-
cation time is changed only in the imagination of _m_a_k_e.

SEE ALSO
_T_h_e _G_N_U _M_a_k_e _M_a_n_u_a_l

BUGS
See the chapter ‘Problems and Bugs’ in _T_h_e _G_N_U _M_a_k_e _M_a_n_u_a_l .

AUTHOR
This manual page contributed by Dennis Morse of Stanford
University. It has been reworked by Roland McGrath.

GNU Last change: 22 August 1989 4

