
read(2) read(2)

NAME
read, pread, readv − read from file

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t read(int fildes, void *buf , size_t nbyte);

ssize_t pread(int fildes, void *buf , size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

MT-LEVEL
read() is Async-Signal-Safe

DESCRIPTION
read() attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to by buf . If
nbyte is zero, read() returns zero and has no other results. fildes is an open file descriptor.

On devices capable of seeking, the read() starts at a position in the file given by the file pointer associated
with fildes. On return from read(), the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

pread() performs the same action as read(), except that it reads from a given position in the file without
changing the file pointer. The first three arguments to pread() are the same as read() with the addition of a
fourth argument offset for the desired position inside the file. An attempt to perform a pread() on a file that
is incapable of seeking results in an error.

readv() performs the same action as read(), but places the input data into the iovcnt buffers specified by
the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt− 1].

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
readv() always fills one buffer completely before proceeding to the next.

On success, read() and readv() return the number of bytes actually read and placed in the buffer; this
number may be less than nbyte if the file is associated with a communication line (see ioctl(2) and
termio(7I)), or if the number of bytes left in the file is less than nbyte , or if the file is a pipe or a special file.
A value of 0 is returned when an end-of-file has been reached.

read() reads data previously written to a file. If any portion of an ordinary file prior to the end of file has
not been written, read() returns the number of bytes read as 0. For example, the lseek routine allows the
file pointer to be set beyond the end of existing data in the file. If additional data is written at this point,
subsequent reads in the gap between the previous end of data and newly written data return bytes with a
value of 0 until data is written into the gap.

A read() or readv() from a STREAMS (see intro(2)) file can operate in three different modes: byte-stream
mode, message-nondiscard mode, and message-discard mode. The default is byte-stream mode. This can
be changed using the I_SRDOPT ioctl(2) request (see streamio(7I)), and can be tested with the
I_GRDOPT ioctl(2) request.

In byte-stream mode, read() and readv() retrieve data from the stream until they hav e retrieved nbyte
bytes, or until there is no more data to be retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() and readv() retrieve data until they hav e read nbyte bytes,
or until they reach a message boundary. If read() or readv() does not retrieve all the data in a message, the
remaining data is replaced on the stream and can be retrieved by the next read() or readv() call. Message-

24 Feb 1994 1

read(2) read(2)

discard mode also retrieves data until it has retrieved nbyte bytes, or it reaches a message boundary. How-
ev er, unread data remaining in a message after the read or readv returns is discarded, and is not available
for a subsequent read(), readv(), or getmsg() (see getmsg(2)).

When attempting to read from a regular file with mandatory file/record locking set (see chmod(2)), and
there is a write lock owned by another process on the segment of the file to be read:

If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record lock is
removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, read() returns 0 to indicate end-of-file.

If some process has the pipe open for writing and O_NDELAY is set, read() returns 0.

If some process has the pipe open for writing and O_NONBLOCK is set, read() returns −1 and
sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the pipe or
the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently available:

If O_NDELAY is set, read() returns 0.

If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or terminal, and that has
no data currently available:

If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined by the current read
mode setting. In byte-stream mode, read() accepts data until it has read nbyte bytes, or until there is no
more data to read, or until a zero-byte message block is encountered. read() then returns the number of
bytes read, and places the zero-byte message back on the stream to be retrieved by the next read() or
getmsg() (see getmsg(2)). In the two other modes, a zero-byte message returns a value of 0 and the mes-
sage is removed from the stream. When a zero-byte message is read as the first message on a stream, a
value of 0 is returned regardless of the read() mode.

A read() or readv() from a STREAMS file returns the data in the message at the front of the stream head
read queue, regardless of the priority band of the message.

Normally, a read() from a STREAMS file can only process messages with data and without control infor-
mation. The read() fails if a message containing control information is encountered at the stream head.
This default action can be changed by placing the stream in either control-data mode or control-discard
mode with the I_SRDOPT ioctl(2). In control-data mode, control messages are converted to data mes-
sages by read(). In control-discard mode, control messages are discarded by read(), but any data associ-
ated with the control messages is returned to the user.

RETURN VALUES
On success a non-negative integer is returned indicating the number of bytes actually read. Otherwise, a −1
is returned and errno is set to indicate the error.

ERRORS
read(), pread(), and readv() fail if one or more of the following are true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK was set, and
there was a blocking record lock.

24 Feb 1994 2

read(2) read(2)

EAGAIN Total amount of system memory available when reading using raw I/O is temporarily
insufficient.

EAGAIN No data is waiting to be read on a file associated with a tty device and O_NONBLOCK
was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or O_NONBLOCK was
set.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the read operation and no data was transferred.

EINVAL Attempted to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a background process group and is
attempting to read from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group of the process is orphaned.

EISDIR fildes refers to a directory on a file system type that does not support read operations on
directories.

ENOLCK The system record lock table was full, so the read() or readv() could not go to sleep
until the blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer active.

ENXIO The device associated with fildes is a block special or character special file and the value
of the file pointer is out of range.

In addition, readv() may return one of the following errors:

EFAULT iov points outside the allocated address space.

EINVAL iovcnt was less than or equal to 0, or greater than or equal to {IOV_MAX}. (See intro(2)
for a definition of {IOV_MAX}).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

In addition, pread() fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or fifo.

A read() from a STREAMS file also fails if an error message is received at the stream head. In this case,
errno is set to the value returned in the error message. If a hangup occurs on the stream being read, read()
continues to operate normally until the stream head read queue is empty. Thereafter, it returns 0.

SEE ALSO
intro(2), chmod(2), creat(2), dup(2), fcntl(2), getmsg(2), ioctl(2), open(2), pipe(2), streamio(7I),
termio(7I)

24 Feb 1994 3

