
wait(2) wait(2)

NAME
wait − wait for child process to stop or terminate

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

MT-LEVEL
Async-Signal-Safe

DESCRIPTION
wait() suspends the calling process until one of its immediate children terminates or until a child that is
being traced stops because it has received a signal. The wait() function will return prematurely if a signal
is received. If any unawaited process stopped or terminated prior to the call on wait(), return is immediate.

If wait() returns because the status of a child process is available, it returns the process ID of the child pro-
cess. If the calling process had specified a non-zero value for stat_loc, the status of the child process will
be stored in the location pointed to by stat_loc. It may be evaluated with the macros described on wstat(5).
In the following, status is the object pointed to by stat_loc:

If the child process stopped, the high order 8 bits of status will contain the number of the signal
that caused the process to stop and the low order 8 bits will be set equal to WSTOPFLG.

If the child process terminated due to an _exit() call, the low order 8 bits of status will be 0 and
the high order 8 bits will contain the low order 8 bits of the argument that the child process passed
to _exit(); see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status will be 0 and the low
order 8 bits will contain the number of the signal that caused the termination. In addition, if
WCOREFLG is set, a “core image” will have been produced; see signal(3C).

If wait() returns because the status of a child process is available, then that status may be evaluated with
the macros defined by wstat(5).

If a parent process terminates without waiting for its child processes to terminate, the parent process ID of
each child process is set to 1. This means the initialization process inherits the child processes; see
intro(2).

RETURN VALUES
When wait() returns due to a terminated child process, the process ID of the child is returned to the calling
process. Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
wait() will fail if one or both of the following is true:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal.

SEE ALSO
intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), waitid(2), waitpid(2), signal(3C),

signal(5), wstat(5)

NOTES
See NOTES in signal(3C).

Since wait() will block on a stopped child, if the calling process wishes to see the return results of such a
wait, it should use waitid(2) or waitpid(2) instead of wait().

29 Jul 1991 1

