
C for Java Programmers
� lecture notes credits:

– Advanced Programming (cs3995, Spring 2002, Prof Schulzrinne)

– Software Construction (J. Shepherd)

– Operating Systems at Cornell (Indranil Gupta)

� today:

– Why learn C after Java?

– A brief background on C

– C preprocessor

– Modular C programs

cs3157-fall2002-sklar-lect02 1

Why learn C after Java (1)?
� Both high-level and low-level language

– OS: user interface to kernel to device driver

� Better control of low-level mechanisms

– memory allocation, specific memory locations

� Performance sometimes better than Java (Unix, NT!)

– usually more predictable (also: C vs. C++)

� Java hides many details needed for writing code, but in C you need to be careful because:

– memory management responsibility left to you

– explicit initialization and error detection left to you

– generally, more lines of (your) code for the same functionality

– more room for you to make mistakes

cs3157-fall2002-sklar-lect02 2

Why learn C after Java (2)?
� Most older code is written in C (or C++)

– Linux, Unix/BSD

– Windows

– Most Java implementations

– Most embedded systems

� Philosophical considerations:

– Being multi-lingual is good!

– Should be able to trace program from UI to assembly

cs3157-fall2002-sklar-lect02 3

C pre-history (1)
� 1960s: many new languages

– COBOL for commercial programming (databases)

– FORTRAN for numerical and scientific programs

– PL/I as second-generation unified language

– LISP, Simula for CS research, early AI

– Assembler for operating systems and timing-critical code

� Operating systems:

– OS/360

– MIT/GE/Bell Labs Multics (PL/I)

cs3157-fall2002-sklar-lect02 4

C pre-history (2)
� Bell Labs (research arm of Bell System � AT&T � Lucent) needed own OS

� BCPL as Multics language

� Ken Thompson: B

� Unix = Multics - bits

� Dennis Ritchie: new language = B + types

� Development on DEC PDP-7 with 8K 16-bit words

cs3157-fall2002-sklar-lect02 5

C history
� C

– Dennis Ritchie in late 1960s and early 1970s

– systems programming language

– make OS portable across hardware platforms

– not necessarily for real applications — could be written in Fortran or PL/I

� C++

– Bjarne Stroustrup (Bell Labs), 1980s

– object-oriented features

� Java

– James Gosling in 1990s, originally for embedded systems

– object-oriented, like C++

– ideas and some syntax from C

cs3157-fall2002-sklar-lect02 6

C for Java programmers
� Java is mid-90s, high-level Object-Oriented (OO) language

� C is early-70s, procedural language

� C advantages:

– direct access to OS primitives (system calls)

– more control over memory

– fewer library issues — just execute

� C disadvantages:

– language is portable, but APIs are not

– no easy graphics interface

– more control over memory (memory leaks)

– preprocessor can lead to obscure errors

cs3157-fall2002-sklar-lect02 7

C vs. C++
� We’ll cover both, but C++ should be largely familiar

� Very common in Windows

� Possible to do OO-style programming in C

� C++ can be rather opaque: encourages “clever” programming

cs3157-fall2002-sklar-lect02 8

C vs. Java (1)

Java C
object-oriented function-oriented
strongly-typed can be overridden
polymorphism (+,==) very limited (integer/float)
classes for name space (mostly) single name space, file-oriented
macros are external, rarely used macros common (preprocessor)
layered I/O model byte-stream I/O
automatic memory management function calls (C++ has some support)
no pointers pointers (memory addresses) common
by-reference, by-value by-value parameters
exceptions, exception handling signals, signal handling
concurrency (threads) library functions (system calls)
length of array on your own
string as a type on your own (byte[] or char[] with

�

0 end)
dozens of common libraries OS-defined

cs3157-fall2002-sklar-lect02 9

C vs. Java (2)
� Java program

– collection of classes

– class containing main method is starting class

– running java StartClass invokes StartClass.main method

– JVM loads other classes as required

� C program

– collection of functions

– one function – main() – is starting function

– running executable (default name a.out) starts main function

– typically, single program with all user code linked in — but can be dynamic libraries
(.dll, .so)

cs3157-fall2002-sklar-lect02 10

C vs. Java: simple example.

Java

public class hello {
public static void main(String[] args) {

System.out.println("hello world! ");
}

}

C

#include <stdio.h>
int main(int argc, char *argv[]) {
puts("hello world!");
return 0;

}

cs3157-fall2002-sklar-lect02 11

Dissecting the example
� #include <stdio.h> to include header file stdio.h

� # lines processed by pre-processor

� No semicolon at end of pre-processor lines

� Lower-case letters only — C is case-sensitive

� void main(void){ ... } is the only code executed

� puts(" /* message you want printed */ ");

� \n = newline, \t = tab

� \ in front of other special characters within printf.

� printf("Have you heard of \"The Matrix\" ? \n");

cs3157-fall2002-sklar-lect02 12

Executing C programs (1)

int main(int argc, char argv[])

� argc is the argument count

� argv is the argument vector

– array of strings with command-line arguments

� the int value is the return value

– convention: return value of 0 means success, � 0 means there was some kind of error

– can also declare as void (no return value)

cs3157-fall2002-sklar-lect02 13

Executing C programs (2)
� Name of executable followed by space-separated arguments

� $ a.out 1 23 "third arg"

� this is stored like this:

"third arg"1a.out 23

argv

4

argc

cs3157-fall2002-sklar-lect02 14

Executing C programs (3)
� If no arguments, simplify:

int main() {
puts("hello world");
exit(0);

}

� Uses exit() instead of return() — almost the same thing.

cs3157-fall2002-sklar-lect02 15

Executing C programs (4)
� Java programs are compiled and interpreted:

– javac converts foo.java into foo.class

– class file is not machine-specific

– byte codes are then interpreted by JVM

� C programs are compiled into object code and then linked into executables (to allow for
multiple object files to work together):

– gcc compiles foo.c into foo.o and then links foo.o into a.out

– you can skip writing foo.o if there is only one object file used to create your
executable

– a.out is executed by OS and hardware

cs3157-fall2002-sklar-lect02 16

Executing C programs (5)

x.java

x.c

javac

a.outgcc

java x

args

data

args

data

cs3157-fall2002-sklar-lect02 17

Compiling C programs (1)
� gcc is the C compiler we’ll use in this class

� it’s a free compiler from Gnu (i.e., Gnu C Compiler)

� gcc translates C program into executable for some target

� default file name a.out

$ gcc hello.c
$ a.out
hello world!

cs3157-fall2002-sklar-lect02 18

The C compiler gcc (2)
� Behavior controlled by command-line switches:

-o filename output file for object or executable
-Wall display all warnings
-c compiles but doesn’t link
-g insert code for debugger (gdb)
-p insert code for profiler
-I specify path for include files
-L specify path for library files
-l specify library
-E preprocessor output only

cs3157-fall2002-sklar-lect02 19

Using gcc
� Two-stage compilation

1. pre-process and compile: gcc -c hello.c

2. link: gcc -o hello hello.o

� Linking several modules:
gcc -c a.c � a.o
gcc -c b.c � b.o
gcc -o hello a.o b.o

� Using math library:
gcc -o calc calc.c -lm

cs3157-fall2002-sklar-lect02 20

Error reporting in gcc
� Multiple sources

� preprocessor: missing include files

� parser: syntax errors

� assembler: rare

� linker: missing libraries

cs3157-fall2002-sklar-lect02 21

