e N (7 R
today logical operators (1)
o homework #1 — due on monday sep 23, 6am e in C are the same as in Java
o some miscellaneous topics: _meaning C operator.
AND &&
— logical operators OR [
— random numbers NOT !
— character handling functions o since there are no boolean types in C, these are mainly used to connect clauses ini f and
- FILEI/O whi | e statements
e strings o remember that
o arrays - non-zero = true
e pointers —zero = false
©s3157-fall 2002-skl ar-lect05 cs3157-fall 2002-sklar-lect05
o 2N _J
- N I
logical operators (2) logical operators (3)
e exercise: what is the output of the following code fragment? o there are also bitwise operators in C, in which each bit is an operand:
int n = 12345, m= 0, meening_C operator
printf("n and n=[%]\n",n & n); b!tw!se OR
printf("n or n=[%]\n",n || n); ftwise l
printf("not n=[%]\n",In); o example:
pr?ntf(“n and nE[%]\n", n & M) ; int a=8; /* thisis 1000 in base 2 */
printf("n or me[%d]\n",n || m; int b =15 /* thisis 1111 in base 2 */
printf("not mr[%]\n",!m);
1000 (=8) 1000 (=8)
a&b= & 1111 (=15) al b= | 1111 (=15)
1000 (=8) 1111 (=15)
©s3157-fall2002-sklar-lect05 ¢s3157-fall 2002-sklar-lect05
- AN J

e N (7 R
logical operators (4) random numbers (1)
e exercise: what is the output of the following code fragment? o with computers, nothing is random (even though it may seem so at times...)
int a=12, b =7 o there are two steps to using random numbers in C:
printf("a & b = %l\n",a & b); 1. seeding the random number generator
printf("a || b =9%\n" a|| b); 2. generating random number(s)
printf("a &b = %l\n",a &b); . .
printf("a| b =9%\n",a| b); e standard library function:
#i nclude <stdlib. h>
 seed function:
srand(tinme (NULL));
o random number function returns a number between 0 and RAND _MAX (which is 232)
int i =rand();
©s3157-fall 2002-skl ar-lect05 cs3157-fall 2002-sklar-lect05
o _J _J
- N I
random numbers (2) character handling functions (1).
#i ncl ude <stdi o. h> e character handling library
#i ncl ude <stdlib. h> 4 nel ude <ct h>
#i ncl ude <time. h> ' hel ude =ctype.
int min(void) { o digit recognition functions (bases 10 and 16)
intr; . alphanumeric character recognition
srand(tinme (NULL));
r = rand() % 100; case recognition/conversion
pri nt f (" pl ck a nunmber between 0 and 100...\n") ; e character type recognition
intf(" %l nber ?" ;
} printf("was your number=?®,) o these are all of the form:
int isdigit(int c);
where the argument c is declared as ani nt , but it is intepreted as a char
soifc = ' 0’ (i.e.,the ASCII value ’0’, index=48), then the function returns true
(non-zero int)
butifc = 0 (i.e., the ASCII value NULL, index=0), then the function returns false (0)
©s3157-fall2002-sklar-lect05 ¢s3157-fall 2002-sklar-lect05
- AN J

e N (7 R
character handling functions (2). character handling functions (3).
digit recognition functions (bases 10 and 16) alphanumeric character recognition
eint isdigit(int c); eint isalpha(int c);
returns true (i.e., non-zero int) if ¢ is a decimal digit (i.e., intherange’ 0" .. " 9’); returns true (i.e., non-zero int) if c is a letter (i.e., in the range
returns O otherwise AL Z T a ..tz); returns O otherwise
eint isxdigit(int c); eint isalnun{ int c);
returns true (i.e., non-zero int) if ¢ is a hexadecimal digit (i.e., in the range returns true (i.e., non-zero int) if ¢ is an alphanumeric character (i.e., in the range
0.9, A .. F);returns 0 otherwise ALV Z a2, 0 L7 97); returns O otherwise
©s3157-fall 2002-skl ar-lect05 9 cs3157-fall 2002-sklar-lect05 10
o 2N _J
- N I
character handling functions (4). character handling functions (5).
case recognition character type recognition
eint islower(int c); eint isspace(int c);
returns true (i.e., non-zero int) if c is a lowercase letter (i.e., intherange’ a’' . .’ z'); returns true (i.e., non-zero int) if ¢ is a space; returns 0 otherwise
returns 0 otherwise eint iscntri(int ¢);
eint isupper(int c); returns true (i.e., non-zero int) if ¢ is a control character; returns 0 otherwise
returns true (|.e.,_ non-zero int) if ¢ is an uppercase letter (i.e., intherange’ A" . . "' Z'); eint ispunct(int ¢);
returns 0 otherwise . S . .
returns true (i.e., non-zero int) if ¢ is a punctuation mark; returns 0 otherwise
case conversion)
eint isprint(int c);
eint tolower(int c); returns true (i.e., non-zero int) if ¢ is a printable character; returns 0 otherwise
returns the value of ¢ converted to a lowercase letter (does nothing if c is not a letter or if
. eint isgraph(int c);
c is already lowercase) . T i .
returns true (i.e., non-zero int) if ¢ is a graphics character; returns O otherwise
eint toupper(int c);
returns the value of ¢ converted to an uppercase letter (does nothing if c is not a letter or
if ¢ is already uppercase)
©s3157-fall2002-sklar-lect05 11 ¢s3157-fall 2002-sklar-lect05 12
- AN J

e N (7 R
character handling functions (6). file 1/0 (1).
® exercise: o file handling involves three steps:
start with the folloyving code fra'gment that loops through the extended ASCII character 1. opening the file
set (0..255) and prints out each index and each ASCII value: . -,]
2. reading from and/or writing to the file
int i; 3. closing the file
for (i=0; i<256; i++) { files in C il
printf("od %e\n",i,i): o files in C are sequential access
1 o think of it as a cursor that sits at a position in the file
make this into a program e with each read and write operation, you move that cursor’s position in the file
call each ct ype function shown on the previous slides that start with i s and print out o the last position in the file is called the “end-of-file” and is typically written as: <EOF>
the return values — then you can see which characters are printable, graphics, etc. o all the functions described on the next few slides are defined in the <st di 0. h> header
file
©s3157-fall 2002-skl ar-lect05 13 cs3157-fall 2002-sklar-lect05 14
- AN _/
- N I
file 1/0 (2). file 1/0 (3).
opening files reading from and writing to files
e FILE *fopen(const char *filenane, const char *node); o these functions are just like pri nt f and scanf , except that instead of writing to the
« fi | ename is a string containing the name of the file you want to open; this file is in the screen and reading from the keyboard, they write to and read from a file
current working directory or else you have to include a full path specification o for writing to a file:
onDdelsone(?fthefollowmg:.. . int fprintf(FILE *fp, const char *format /*, args...*/);
\ mode | meaning | cursor position | create file?
r read only | beginning of file | no this function returns the number of bytes written
r+ | read/write | beginning of file | no f p is the file pointer of the file you are writing to
w write only | beginning of file | yes
WH rea_d/write beginnir_1g of file | yes « for reading from a file:
a write only | end of file no
a+ | read/write | end of file no int fscanf(FILE *fp, const char *format /*, args...*/);
the Iast_column indicates whether the file is created if it does not exist — this is only this function returns the number of bytes read
done with the wmodes f p is the file pointer of the file you are reading from
o the function returns a value of type FI LE *, which is a file pointer (we’ll talk about
pointers later today), or NULL if there is an error
©s3157-fall2002-sklar-lect05 15 ¢s3157-fall 2002-sklar-lect05 16
- AN J

e N (7 A
file 1/0 (4). strings (1).
closing files o storing multiple characters in a single variable
eint close(FILE *fp); o data type is still char
}‘ ggit:)e pointer to the file you want to close (the value returned from a previous call to « BUT it has a length
o last character the is terminator: * \ 0’ , aka NULL
e string constants are surrounded by double quotes: "
o example:
char s[6] = "ABCDE';
©s3157-fall 2002-skl ar-lect05 17 cs3157-fall 2002-sklar-lect05 18
o 2N _J
e N I
strings (2). strings (3).
o example: printing strings
char s[6] = "ABCDE"; o format sequence: %s
o storage looks like this: [A[B]C|D[E[\0] o example:
o 50 with strings, you really only access the values stored at indeces 0 through length — 2, #include <stdio. h>
since the value stored at length — 1 is always \0 int min(void) {
char str[6] = "ABCDE";
printf("str = %\n", str);
} /* end of main() */
e output:
ABCDE
©s3157-fall2002-sklar-lect05 19 ¢s3157-fall 2002-sklar-lect05 20
o O\ %

- N N
strings (4). arrays (1).
e string handling library e astring is an array of characters
#i ncl ude <string. h> e an array is a “regular grouping or ordering”
o functions include: o a data structure consisting of related elements of the same data type
int strien(char *s); e in C, an array has a length associated with it
. e arrays need:
this function returns the number of characters in s; note that this is NOT the same thing
as the number of characters allocated for the string array — data type
eint strcnp(const char *sl1, const char *s2); - name
“This function returns an integer greater than, equal to, or less than 0, if the string pointed — length
to by sl is greater than, equal to, or less than the string pointed to by s2 respectively. The o length can be determined:
sign of a non-zero re_tum value is detgrmiped by th_e sign c_)f the difference between the — statically — at compile time
values of the first pair of bytes that differ in the strings being compared.” e.g.,char stri[10];
o for more information and more string functions, do: — dynamically — at run time
uni x$ man strcnp eg.char *str2;
©s3157-fall 2002-skl ar-lect05 21 cs3157-fall 2002-sklar-lect05 22
o _J _J
4 I I
arrays (2). array (3).
o defining a variable is called “allocating memory” to store that variable character array example
o defining an array means allocating memory for a group of bytes, i.e., assigning a label to #i ”C! ude <stdio. h>
the first byte in the group #define MAX 6
o . int main(void) {
o individual array elements are indexed char str[MAX] = " ABCDE":
— starting with 0 int i;
— ending with length — 1 for (i=0; i<MAX-1; i++) {
. . rintf("%", str[i ;
o indeces follow array name, enclosed in square brackets ([1) } P ((1)
e.g.,arr[25] printf("\n");
} /* end of main() */
©s3157-fall2002-sklar-lect05 23 ¢s3157-fall 2002-sklar-lect05 24
- / J

e N (7 R
arrays (4). pointers (1).
integer array example o variables that contain memory addresses as their values
#i nc! ude <stdio. h> o other data types we’ve learned about in C use direct addressing
#define MAX 6 . S .
int main(void) { pointers facilitate indirect addressing
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 }; declaring pointers:
tnt i o o — pointers indirectly address memory where data of the types we’ve already discussed
for (i=0; i<MAX i +_+) A is stored (e.g., int, char, float, etc.)
printf("o%d", arr[i]); . . o . . .
} — declaration uses asterisks (*) to indicate a pointer to a memory location storing a
printf("\n"); particular data type
} /* end of main() */ o example:
int *count;
float *avg;
©s3157-fall 2002-skl ar-lect05 25 cs3157-fall 2002-sklar-lect05 26
o 2N _J
- N I
pointers (2). pointers (3).
e ampersand & is used to dereference a pointer here’s another example:
e it says: return the address of the variable argument int i =3, j =-99
) int count = 12;
* example: int *countPtr = &count;
int count = 12;
int *countPtr = &count; i
and here’s what the memory looks like:
e &count returns the address of count and stores it in the pointer variable count Pt r
icture: variable name | memory location value
*apic “:eh . count OXDIFTF4T0 12
count Fr ° i OXbffff4fa 3
@ = j OXDffff4fe 99
count Pt r 0xbffff600 | Oxbffff4f0
¢s3157-fall 2002-sklar-lect05 27 ©s3157-fall2002-sklar-lect05 28
- AN J

e N (7 A
pointers (4). pointers (5).
e an array is some number of contiguous memory locations #i ncl ude <stdio. h>
 an array definition is really a pointer to the starting memory location of the arra fiinclude <stdlib. h>
y yap g memory y #include <tine. h>
e and pointers are really integers int main() {
o 50 you can perform integer arithmetic on them int i, *j, arr[5];
. . srand(time (NULL));
e e.g., +1 increments a pointer, -1 decrements for (i=0; i<5; i++)
e you can use this to move from one array element to another arr[i] = rand() % 100;
printf("arr=%\n",arr);
for (i=0; i<5; i++) {
printf("i=%l arr[i]=% &arr[i]=%\n",i,arr[i],&rr[i]);
}
j = &arr[0];
printf("\nj=% *j=%\n",j,*j]);
j+H
printf("after adding 1 to j:\n j=% *j=%l\n",j,*j);
}
©s3157-fall 2002-skl ar-lect05 29 cs3157-fall 2002-sklar-lect05 30
o _J _J
- N I
pointers (6). today’s example.
and the output is...
arr=Oxbf fff4f 0 _ The tendency of people to focus on the meaning of sentences
i=0 arr[i]=29 &arr[i]=0xbffffaf0 influences their ability to notice some of the obvious features.
i=1 arr[i]=8 &arr[i]=0xbffff4f4 -
i=2 arr[i]=18 &arr[i]=0xbffff4f8 exercise:
i=3 arr[i]=95 &arr[i]=0xbffff4fc write a program to count the number of “f”’s in the above.
1=4 arr[i]=48 &arr[i]=0xbffff500 Write a program to count the total number of characters
j =Oxbffff4f0 *j =29 e Write a program to count the total number of words
after adding 1 to j: e write a program to write this to a file
j=Oxbffffafa *j=8)) i
o Write a program to read this from a file
©s3157-fall2002-sklar-lect05 31 ¢s3157-fall 2002-sklar-lect05 32
- AN J

