
� �

today

mon 23 sep 2002

� homework #1 — due today

� homework #2 — out today

� quiz #1 — next class

– 30-45 minutes long

– one page of notes

– topics: C

� advanced data types

� dynamic memory allocation

� structured data types (array, struct)

cs3157-fall2002-sklar-lect06 1� �

� �

advanced data types (1) — typedef.

� defining your own types using typedef

typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

cs3157-fall2002-sklar-lect06 2� �

� �

advanced data types (2) — typedef.

� defining your own boolean:

typedef char boolean;
#define FALSE 0
#define TRUE 1

� generally works, but beware:

check = x > 0;
if (check == TRUE) {...}

� if x is positive, check will be non-zero, but may not be � � �

cs3157-fall2002-sklar-lect06 3� �

� �

advanced data types (3) — enum.
� define new integer-like types as enumerated types:

enum weather { rain, snow=2, sun=4 };

typedef enum {
Red, Orange, Yellow, Green, Blue, Violet

} Color;

� look like C identifiers (names)

� are listed (enumerated) in definition

� treated like integers

– start with 0 (unless you set value)

– can add, subtract — e.g., color + weather

– cannot print as symbol automatically (you have to write code to do the translation)

cs3157-fall2002-sklar-lect06 4� �

� �

advanced data types (4) — enum.

� just fancy syntax for an ordered collection of integer constants:

typedef enum {
Red, Orange, Yellow

} Color;

is like

#define Red 0
#define Orange 1
#define Yellow 2

� here’s another way to define your own boolean:

typedef enum {False, True} boolean;

cs3157-fall2002-sklar-lect06 5� �

� �

advanced data types (5) — data objects.

� C does not have Objects in the OOP sense (like Java and C++ do)

� but C has data objects — i.e., variables

short int x;
char ch;
float pi = 3.1415;
float f, g;

� scope

– variables defined in { } block are active only in block — e.g., local

– variables defined outside a block are global (persist during program execution)

– static variables may be declared outside a block, but are not globally visible

cs3157-fall2002-sklar-lect06 6� �

� �

advanced data types (6) — data objects.

� variables must be declared before they are used

� we have used variables within main() and within functions

� global variables

– are declared outside main() and outside any function, usually at the top of the
program file, after any #’s (preprocessor directives)

– can be “seen” anywhere

� local variables

– are declared within a program block or function

– they can only be seen inside the block in which they are defined

– function arguments are local to the function they are passed to

cs3157-fall2002-sklar-lect06 7� �

� �

advanced data types (7) — usage.
� a variable is conceptually a container that can hold a value

� default value is (mostly) undefined — you should treat it as a random number

� the compiler may warn you about uninitialized variables, but not as reliably as Java

� variables are always passed by value, but you can pass the address of a variable to a
function:

scanf("%d%f", &x, &f);

cs3157-fall2002-sklar-lect06 8� �

� �

advanced data types (8) — sizes.

� every data object in C has:

– a name and data type (specified in definition)

– an address (its relative location in memory)

– a size (number of bytes of memory it occupies)

– visibility (which parts of program can refer to it)

– lifetime (period during which it exists)

� Unlike scripting languages and Java, all C data objects have a fixed size over their
lifetime

– except dynamically created objects

� size of object is determined when object is created:

– global data objects at compile time (data)

– local data objects at run-time (stack)

– dynamic data objects by programmer (heap)

cs3157-fall2002-sklar-lect06 9� �

� �

dynamic memory allocation (1).

� malloc() allocates a block of memory:

void *malloc(size_t size);

� lifetime of the block is until memory is freed, with free():

void free(void *ptr);

� example:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

cs3157-fall2002-sklar-lect06 10� �

� �

dynamic memory allocation (2).

� memory leaks — memory allocated that is never freed:

char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {

strcpy(u, s);
strcat(u, t);
return u;

}
else {

return 0;
}

} /* end of combine() */

� u should be freed if return 0; is executed

� but you don’t need to free it if you are still using it!

cs3157-fall2002-sklar-lect06 11� �

� �

dynamic memory allocation (3).
� note: malloc() does not initialize data

� you can allocate and initialize with “calloc”:

void *calloc(size_t nmemb, size_t size);

– calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

� you can also change size of allocated memory blocks with “realloc”:

void *realloc(void *ptr, size_t size);

– realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly allocated
memory will be uninitialized.

� these are all functions in stdlib.h

� for more information: unix$ man malloc

cs3157-fall2002-sklar-lect06 12� �

� �

structured data types (1).

� structured data types are available as:

object property
array [] enumerated; indexed from 0
struct names and types of fields
union made up of multiple elements, but

only one exists at a time;
each element could be a native data type,
a pointer or a struct

cs3157-fall2002-sklar-lect06 13� �

� �

structured data types (2) — arrays.

� “arrays” are defined by specifying an element type and number of elements

– statically:

int vec[100];
char str[30];
float m[10][10];

– dynamically:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

� for an array containing N elements, indeces are 0..N-1

� stored as a linear arrangement of elements

� often similar to pointers

cs3157-fall2002-sklar-lect06 14� �

� �

structured data types (3) — arrays.

� C does not remember how large arrays are (i.e., no length attribute, unlike Java)

� given:

int x[10];
x[10] = 5; /* error! */

� ERROR! because you have only defined x[0]..x[9] and the memory location where x[10]
is can become something else...

� sizeof x gives the number of bytes in the array

� sizeof x[0] gives the number of bytes in one array element

� thus you can compute the length of x via:

int length_x = sizeof x / sizeof x[0];

cs3157-fall2002-sklar-lect06 15� �

� �

structured data types (4) — arrays.
� when an array is passed as a parameter to a function:

– the size information is not available inside the function

– array size is typically passed as an additional parameter

printArray(x, length_x);

– or as part of a struct (best practice; object-like)

typedef struct {
int x[10];
int length_x;

} Array;
Array ax;
ax.length_x = 10;
printArray(ax);

– or globally

#define VECSIZE 10
int x[VECSIZE];

cs3157-fall2002-sklar-lect06 16� �

� �

structured data types (5) — arrays.

� array elements are accessed using the same syntax as in Java: array[index]

� C does not check whether array index values are sensible (i.e., no bounds checking)

� e.g., x[-1] or vec[10000] will not generate a compiler warning!

� if you’re lucky, the program crashes with

Segmentation fault (core dumped)

cs3157-fall2002-sklar-lect06 17� �

� �

structured data types (6) — arrays.

� C references arrays by the address of their first element

� array is equivalent to &array[0]

� you can iterate through arrays using pointers as well as indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

cs3157-fall2002-sklar-lect06 18� �

� �

structured data types (7) — arrays.

� example:

#include <stdio.h>
#define MAX 12
int main(void) {
int x[MAX]; /* declare 12-element array */
int i, sum;
for (i=0; i<MAX; i++) { x[i] = i; }
/* here, what is value of i? of x[i]? */
sum = 0;
for (i=0; i<MAX; i++) { sum += x[i]; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-fall2002-sklar-lect06 19� �

� �

structured data types (8) — arrays.
� another example:

#include <stdio.h>
#define MAX 10
int main(void) {
int x[MAX]; /* declare 10-element array */
int i, sum, *p;
p = &x[0];
for (i=0; i<MAX; i++) { *p = i + 1; p++; }
p = &x[0];
sum = 0;
for (i=0; i<MAX; i++) { sum += *p; p++; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-fall2002-sklar-lect06 20� �

� �

structured data types (9) — 2D arrays.

� 2-dimensional arrays

int weekends[52][2];

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] ...

�

weekends

� you can use indices or pointer math to locate elements in the array

– weekends[0][1]

– weekends+1

� weekends[2][1] is same as *(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

cs3157-fall2002-sklar-lect06 21� �

� �

structured data types (10) — struct.

� struct is similar to a field in a Java object definition

� it’s a way of grouping multiple data types together

� components can be any type (but not recursive)

� accessed using the same syntax struct.field

int main() {
struct {

int x;
char y;
float z;

} rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main() */

cs3157-fall2002-sklar-lect06 22� �

� �

structured data types (11) — struct.

� variables of struct types can be declared in two ways:

– using a tag associated with the struct definition

– wrapping the struct definition inside a typedef

� example:

int main() {
struct record {

int x;
char y;
float z;

};
struct record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main()

cs3157-fall2002-sklar-lect06 23� �

� �

structured data types (12) — struct.
� another example:

int main() {
typedef struct {

int x;
char y;
float z;

} Record;
Record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main()

cs3157-fall2002-sklar-lect06 24� �

� �

structured data types (13) — struct.

� overall size of struct is the sum of the elements, plus padding for alignment

� given previous 3 examples:
sizeof(rec) � 12

� but, it depends on the size and order of content (e.g., ints need to be aligned on word
boundaries, since size of char is 1 and size of int is 4):
struct {
char x;
int y;
char z;

} s1;
/* x y z */
/* |----|----|----| */
/* sizeof s1 -> 12 */

struct {
char x, y;
int z;

} s2;
/* xy z */
/* |----|----| */
/* sizeof s2 -> 8 */

cs3157-fall2002-sklar-lect06 25� �

� �

structured data types (14) — struct.

� pointers to structs are common — especially useful with functions (as arguments to
functions or as function type)

� two notations for accessing elements: (*sp).field or sp->field
(note: *sp.field doesn’t work)

struct xyz {
int x, y, z;
};
struct xyz s;
struct xyz *sp;
...
s.x = 1;
s.y = 2;
s.z = 3;
sp = &s;
(*sp).z = sp->x + sp->y;

cs3157-fall2002-sklar-lect06 26� �

� �

structured data types (15) — extended example p1.

#include <stdio.h>
#include <string.h>

#define NAME_LEN 40

struct person {
char name[NAME_LEN+1];
float height;
struct { /* nested structure */
int day;
int month;
int year;

} birthday;
};

void printPerson(struct person *); /* prototype */

cs3157-fall2002-sklar-lect06 27� �

� �

structured data types (16) — extended example p2.

int main(void) {
struct person suzanne; /* declare one */
struct person class[120]; /* declare an array */
/* store info in one */
strcpy(suzanne.name,"suzanne");
suzanne.height = 60;
suzanne.birthday.day = 16;
suzanne.birthday.month = 5;
suzanne.birthday.year = 1988;
/* store info in the array */
strcpy(class[0].name,"alex");
class[0].height = 48;
class[0].birthday.day = 9;
class[0].birthday.month = 5;
class[0].birthday.year = 1995;
strcpy(class[1].name,"jen");
class[1].height = 55;

cs3157-fall2002-sklar-lect06 28� �

� �

structured data types (17) — extended example p3.

class[1].birthday.day = 14;
class[1].birthday.month = 4;
class[1].birthday.year = 1992;
/* print them... */
printPerson(&suzanne);
printPerson(&class[0]);
printPerson(&class[1]);

} /* end of main() */

void printPerson(struct person *p) {
printf("name = [%s]\n",p->name);
printf("height = %5.2f inches\n",p->height);
printf("birthday = %02d/%02d/%4d\n",p->birthday.day,

p->birthday.month,p->birthday.year);
}

cs3157-fall2002-sklar-lect06 29� �

