e N (7 R
today advanced data types (1) — typedef.
mon 23 sep 2002 o defining your own types using t ypedef
typedef short int small Nunber;
* homework #1 — due today typedef unsigned char byte;
e homework #2 — out today typedef char String[100];
e quiz #1 — next class
. smal | Nunber x;
— 30-45 minutes long byte b;
— one page of notes String nane;
— topics: C
e advanced data types
o dynamic memory allocation
o structured data types (array, struct)
©s3157-fall 2002-skl ar-lect06 cs3157-fall 2002-sklar-lect06
- AN _/
- N I
advanced data types (2) — typedef. advanced data types (3) — enum.
o defining your own boolean: o define new integer-like types as enumerated types:
typedef char bool ean; enum weat her { rain, snow=2, sun=4 };
#define FALSE 0
#define TRUE 1 typedef enum {
Red, Orange, Yellow, Geen, Blue, Violet
o generally works, but beware: .
} Color;
check = x > 0;
if (check == TRUE) {...} « look like C identifiers (names)
e if x is positive, check will be non-zero, but may not be == 1 o are listed (enumerated) in definition
o treated like integers
— start with O (unless you set value)
- can add, subtract —e.g., col or + weat her
— cannot print as symbol automatically (you have to write code to do the translation)
©s3157-fall2002-sklar-lect06 ¢s3157-fall 2002-sklar-lect06
- AN J

e N (7 R
advanced data types (4) — enum. advanced data types (5) — data objects.
e just fancy syntax for an ordered collection of integer constants: o C does not have Objects in the OOP sense (like Java and C++ do)
typedef enum { o but C has data objects— i.e., variables
Red, _ Orange, Yell ow short int x:
} Color; char ch;
is like float pi = 3.1415;
float f, g;
#define Red 0O
#define Orange 1 ® Scope
#define Yellow 2 — variables defined in { } block are active only in block — e.g., local
e here’s another way to define your own boolean: — variables defined outside a block are global (persist during program execution)
typedef enum {False, True} ool ean; — static variables may be declared outside a block, but are not globally visible
©s3157-fall 2002-skl ar-lect06 cs3157-fall 2002-sklar-lect06
o _J _J
e N I
advanced data types (6) — data objects. advanced data types (7) — usage.
o variables must be declared before they are used a variable is conceptually a container that can hold a value
o we have used variables within mai n() and within functions o default value is (mostly) undefined — you should treat it as a random number
e global variables o the compiler may warn you about uninitialized variables, but not as reliably as Java
— are declared outside main() and outside any function, usually at the top of the o variables are always passed by value, but you can pass the address of a variable to a
program file, after any #’s (preprocessor directives) function:
— can be “seen” anywhere scanf("%d% ", &, &);
o |ocal variables
— are declared within a program block or function
— they can only be seen inside the block in which they are defined
— function arguments are local to the function they are passed to
¢s3157-fall 2002-sklar-lect06 ©s3157-fall2002-sklar-lect06
o O\ %

e N (7 R
advanced data types (8) — sizes. dynamic memory allocation (1).
o every data object in C has: o malloc() allocates a block of memory:
— aname and data type (specified in definition) void *mal l oc(size_ t size):
— an address (its relative location in memor T
) () y)_ o lifetime of the block is until memory is freed, with free():
— asize (number of bytes of memory it occupies)
— visibility (which parts of program can refer to it) void free(void *ptr);
— lifetime (period during which it exists) o example:
o Unlike scripting languages and Java, all C data objects have a fixed size over their int *dynvec, num el enents;
lifetime printf("how many el ements do you want to enter? ");
— except dynamically created objects scanf("9%d", &um.el enments);
o A ; . N .
e size of object is determined when object is created: dynvec (int *)malloc(sizeof (int) num el enents);
— global data objects at compile time (data)
— local data objects at run-time (stack)
— dynamic data objects by programmer (heap)
©s3157-fall 2002-skl ar-lect06 9 cs3157-fall 2002-sklar-lect06 10
- AN _/
- N I
dynamic memory allocation (2). dynamic memory allocation (3).
o memory leaks — memory allocated that is never freed: e note: mal | oc() does not initialize data
char *conbine(char *s, char *t) { you can allocate and initialize with “calloc™:
yf=((ch;ar :);’ral{loc(strien(s) + strien(t) +1); void *call oc(size_t nnenb, size_t size);
i s I=
strepy(u, s); — calloc allocates memory for an array of nmernb elements of si ze bytes each and
strcat(u, t); returns a pointer to the allocated memory. The memory is set to zero.
) return u; you can also change size of allocated memory blocks with “realloc”:
el se { void *realloc(void *ptr, size_t size);
return 0; — realloc changes the size of the memory block pointed to by pt r to si ze bytes. The
}) contents will be unchanged to the minimum of the old and new sizes; newly allocated
} /* end of combine() */ memory will be uninitialized.
e u should be freed if ret urn 0; is executed o these are all functionsinstdlib. h
 but you don’t need to free it if you are still using it! o for more information: uni x$ man nal | oc
©s3157-fall2002-sklar-lect06 11 ¢s3157-fall 2002-sklar-lect06 12
- AN J

-

structured data types (1).

e structured data types are available as:

| object property
array [] |enumerated; indexed from O
struct names and types of fields
uni on made up of multiple elements, but

only one exists at a time;
each element could be a native data type,
a pointer or a struct

©s3157-fall 2002-sklar-lect06 13

N
-

structured data types (2) — arrays.

o “arrays” are defined by specifying an element type and number of elements
— statically:

int vec[100];
char str[30];
float ni10][10];
— dynamically:
int *dynvec, num.el enents;
printf("how nany el ements do you want to enter? ");
scanf("%l", &wumelenents);
dynvec = (int *)malloc(sizeof(int) * numelenents);

o for an array containing N elements, indeces are 0..N-1
e stored as a linear arrangement of elements

 often similar to pointers

cs3157-fall2002-sklar-lect06

structured data types (3) — arrays.

e C does not remember how large arrays are (i.e., no length attribute, unlike Java)

e given:
int x[10];
x[10] =5; [/* error! */

e ERROR! because you have only defined x[0]..x[9] and the memory location where x[10]
is can become something else...

e si zeof x gives the number of bytes in the array

e si zeof x[0] gives the number of bytes in one array element

e thus you can compute the length of x via:

int length_x = sizeof x / sizeof x[0];

©s3157-fall2002-sklar-lect06 15

structured data types (4) — arrays.

e when an array is passed as a parameter to a function:
— the size information is not available inside the function
— array size is typically passed as an additional parameter
printArray(x, length_x);
— or as part of a struct (best practice; object-like)

typedef struct {
int x[10];
int length_x;
} Array;
Array ax;
ax.length_x = 10;
printArray(ax);
- or globally

#def i ne VECSI ZE 10
int x[VECSI ZE] ;

€s3157-fall 2002-skl ar-lect06

N

e N R
structured data types (5) — arrays. structured data types (6) — arrays.
o array elements are accessed using the same syntax as in Java: ar r ay[i ndex] o C references arrays by the address of their first element
o C does not check whether array index values are sensible (i.e., no bounds checking) e array is equivalent to &ar r ay[0]
ee.g., x[-1] orvec[10000] will not generate a compiler warning! e you can iterate through arrays using pointers as well as indexes:
o if you’re lucky, the program crashes with int *v, *last;
Segrment ation fault (core dunped) int sum=0;
last = &[length_x-1];
for (v =x; v <= last; v++)
sum += *v;
©s3157-fall 2002-skl ar-lect06 17 cs3157-fall 2002-sklar-lect06 18
o _J _J
- N I
structured data types (7) — arrays. structured data types (8) — arrays.
o example: o another example:
#i ncl ude <stdio. h> #i ncl ude <stdio. h>
#define MAX 12 #define MAX 10
int main(void) { int main(void) {
int x{MAX]; /* declare 12-elenment array */ int x{MAX]; /* declare 10-element array */
int i, sum int i, sum *p;
for (i=0; i<MAX; i++) { x[i] =1i; } p = &[0];
/* here, what is value of i? of x[i]? */ for (1=0; i<MAX; i++) { *p =i + 1, p++ }
sum = 0; p = &[0];
for (i=0; i<MAX; i++) { sum+= x[i]; } sum = 0;
printf("sum= %\ n", sum); for (i=0; i<MAX; i++) { sum+= *p; p++; }
} /* end of main() */ printf("sum= %l\n",sum);
} /* end of main() */
©s3157-fall2002-sklar-lect06 19 ¢s3157-fall 2002-sklar-lect06 20
- AN J

N N
structured data types (9) — 2D arrays. structured data types (10) — struct.
o 2-dimensional arrays e struct issimilar to a field in a Java object definition
int weekends[52][2]; e it’s a way of grouping multiple data types together
[0][0] [O1[4] [21[O0] [21[1] [21[0] [21[1] [3]1[0] e components can be any type (but not recursive)
\ \ \ | \ accessed using the same syntax struct.field
t . .
weekends int main() {
o . . struct {
e you can use indices or pointer math to locate elements in the array int x:
—weekends[0] [1] char vy;
-weekends+1 float z;
rec;
e weekends[2] [1] issame as * (weekends+2*2+1) , but NOT the same as];ec X = 3
weekends+2 2+1 (which is an integer)! rec.y = :’:l' ;
rec.z = 3.1415;
printf("rec = % % %\n",rec.x,rec.y,rec.z);
} /* end of main() */
©s3157-fall 2002-skl ar-lect06 21 cs3157-fall 2002-sklar-lect06 22
- AN _/
- N I
structured data types (11) — struct. structured data types (12) — struct.
o variables of st r uct types can be declared in two ways: e another example:
— using a tag associated with the st r uct definition int main() {
— wrapping the st r uct definition inside at ypedef typedef struct {
o example: int x;
. . char vy;
int main() { q float z;
st_ruct .recor { } Record:
'Et X’_ Record rec;
;:Iar y,. rec.x = 3,
. oat z; rec.y ='a’;
b I rec.z = 3.1415;
struct_rg.cor rec. printf("rec = % % %\n",rec.x,rec.y,rec.z);
rec.x = } /* end of main()
rec.y ='a';
rec.z = 3.1415;
printf("rec = % % %\n",rec.x,rec.y,rec.z);
} /* end of main()
©s3157-fall2002-sklar-lect06 23 ¢s3157-fall 2002-sklar-lect06 24
- AN J

e N (7 R
structured data types (13) — struct. structured data types (14) — struct.
e overall size of st r uct is the sum of the elements, plus padding for alignment e pointers to structs are common — especially useful with functions (as arguments to
« given previous 3 examples: functions or as function type)
sizeof (rec) —» 12 o two notations for accessing elements: (*sp) . fi el dorsp->field
o but, it depends on the size and order of content (e.g., i nt s need to be aligned on word (note: *sp.field doesn’t work)
boundaries, since size of char is 1 and size of int is 4): struct xyz {
struct { struct { int x, y, z;
char x;) };
. ; char x, vy; ;
int y; int z: struct xyz s;
char z; } s2: ' struct xyz *sp;
}osi /v x 2 %) o
/* x z */ y = 1:
y P [R s.x = 1;
R e R . ' = sy = 2
/* sizeof s1 -> 12 */ [* sizeof s2 ->8 / s.z = 3;
sp = &s;
(*sp).z = sp->x + sp->y;
©s3157-fall 2002-skl ar-lect06 25 cs3157-fall 2002-sklar-lect06 26
- _/ _/
- N I
structured data types (15) — extended example p1. structured data types (16) — extended example p2.
#i ncl ude <stdio. h> int main(void) {
#i ncl ude <string. h> struct person suzanne; /* declare one */
struct person class[120]; /* declare an array */
#defi ne NAVE_LEN 40 /* store info in one */
strcpy(suzanne. nane, "suzanne");
struct person { suzanne. hei ght = 60;
char nane[NAVE_LEN+1] ; suzanne. bi rt hday. day = 16;
float height; suzanne. bi rt hday. month = 5;
struct { /* nested structure */ suzanne. bi rt hday. year = 1988;
int day; /* store info in the array */
int nonth; strcpy(class[0].nane, "al ex");
int year; cl ass[0] . hei ght = 48;
} birthday; class[0].birthday.day = 9;
) class[0].birthday. month = 5;
cl ass[0] . birthday. year = 1995;
voi d printPerson(struct person *); /* prototype */ strcpy(class[1].name, "jen");
cl ass[1] . height = 55;
©s3157-fall2002-sklar-lect06 27 ¢s3157-fall 2002-sklar-lect06 28
- AN J

o

structured data types (17) — extended example p3.

class[1] . birthday. day = 14;
class[1]. birthday. month = 4;
class[1]. birthday.year = 1992;
/[* print them.. */
print Person(&suzanne);
printPerson(&class[0]);
printPerson(&class[1]);

} /* end of main() */

voi d printPerson(struct person *p) {
printf("name = [%]\n", p->nane);
printf("height = 9%.2f inches\n",p->height);
printf("birthday = %92d/ %92d/ %d\ n", p- >bi rt hday. day,
p- >bi rt hday. nont h, p- >bi rt hday. year);

©s3157-fall 2002-sklar-lect06

29

