
� �

today

mon 30 sep 2002

� homework #2 — EXTENSION — due MON OCT 7, 6AM

� see class web page for hw#2 script instructions

� shell scripts

references for these slides:
— cs3995 Spring 2002 lecture notes, by Henning Schulzrinne
— UNIX Power Tools, by Peek, O’Reilly and Loukides

cs3157-fall2002-sklar-lect08 1� �

� �

scripting languages (1)

� not a well-defined term

� derived from shell (command-line) scripts

� often typed directly by user

� usually no compile-link-run cycle, but interpreted or compiled (i.e., just in time — JIT)

� we’ll look at typical examples:

– sh, bash (today)

– sed — pattern editing (later)

– awk — pattern language (later)

– perl — a real language for string processing (later)

– Tcl — shell-like, easy extensible, graphical GUI (later)

– python — object-oriented (later)

cs3157-fall2002-sklar-lect08 2� �

� �

scripting languages (2)

� often loosely typed

– no explicit variable and type declaration

– variables treated as strings or numbers according to context

� dynamic memory allocation with automatic garbage collection

� text processing:

– regular expressions

– sorting

– other utilities...

� procedural, but often with object-oriented extensions

� some are derived from substitution instead of evaluation — Tcl, sh

� some allow mixed-language programming — Tcl, perl, python

cs3157-fall2002-sklar-lect08 3� �

� �

shells
� each OS has one, but there are different levels of sophistication:

– Windows: DOS command prompt

– UNIX:

� sh — Bourne shell, the original /bin/sh

� bash — Bourne-Again Shell, derived from sh

� ksh — Korn shell = superset of sh

� csh — with C-like syntax

� tcsh — improved version of csh

cs3157-fall2002-sklar-lect08 4� �

� �

sh (1)

� sh is the first scripting language

� it is a program that interprets your command lines and runs other programs

� it can invoke Unix commands and also has its own set of commands

� example:

while (1) {
print prompt and wait for user to enter input;
read input from terminal;
parse into words;
substitute variables;
execute commands (execv or builtin);

}

cs3157-fall2002-sklar-lect08 5� �

� �

sh (2)

� shell commands can be read:

– from a terminal � interactive

– from a file � shell script

� search path

– the place where the shell looks for the commands it runs

– should include standard directories:

� /bin

� /usr/bin
– it should also include your current working directory (.)

cs3157-fall2002-sklar-lect08 6� �

� �

sh (3)

� are you runnning the Bourne shell?

– type sh$ echo $SHELL

– if the answer is /bin/sh, then you are

– if the answer is /bin/bash, then that’s close enough

– otherwise, you can start the Bourne shell by typing sh at the UNIX prompt

– enter Ctrl-D or exit to exit the Bourne shell and go back to whatever shell you
were running before...

cs3157-fall2002-sklar-lect08 7� �

� �

sh (4)
� capable of both synchronous and asynchronous execution

– synchronous: wait for completion

– asychronous: in parallel with shell (runs in the background)

� allows control of stdin, stdout, stderr

� enables environment setting for processes (using inheritance between processes)

� sets default directory

cs3157-fall2002-sklar-lect08 8� �

� �

sh (5)

� creating your own shell scripts

� naming:

– DON’T ever name your script (or any executable file) “test”

– since that’s a sh command

� executing

– the notation #! inside your file tells UNIX which shell should execute the commands
in your file

� example — create a file called “myscript.sh”

#!/bin/sh
echo hello world

� make the script executable: sh$ chmod +x myscript.sh

� execute the script: sh$./myscript.sh or just sh$ myscript.sh

(note that sh$ means the unix prompt, i.e., unix$)

cs3157-fall2002-sklar-lect08 9� �

� �

sh (6)

� quoting

– ‘something‘: preserve literally

– "something": allow $ variable expansion

– $ ’escape-sequence’: e.g., $’

�

a’

� comments

– single line comments only

– line begins with # character

cs3157-fall2002-sklar-lect08 10� �

� �

sh (7) — simple commands

� sequence of words

� first word defines command

� can be combined with &&, ||, ;

– to execute commands sequentially:
cmd1; cmd2;

– to execute commands asynchronously:
cmd1&
cmd2&

– to execute cmd2 if cmd1 has zero exit status:
cmd1 && cmd2

– to execute cmd2 only if cmd1 has non-zero exit status:
cmd1 || cmd2

� set exit status using exit command (e.g., exit 0 or exit 1)

cs3157-fall2002-sklar-lect08 11� �

� �

sh (8) — pipes
� sequence of commands

� connected with |

� each command reads previous command’s output and takes it as input

� example:

sh$ echo "hello world" | wc -w
2

cs3157-fall2002-sklar-lect08 12� �

� �

sh (9) — shell variables

� variables are placeholders for values

� shell does variable substitution

� $var or $

�

var

�

is the value of the variable

� assignment:

– var=value (with no spaces before or after!)

– let "var = value"

– export var=value

� BUT values go away when shell is done executing

� uninitialized variables have no value

� variables are untyped, interpreted based on context

� standard shell variables:

– $

�

N

�

= shell Nth parameter

– $$ = process ID

– $? = exit status

cs3157-fall2002-sklar-lect08 13� �

� �

sh (10) — environment variables

� shell variables are generally not visible to programs

� environment variables are a list of name/value pairs passed to sub-processes

� all environment variables are also shell variables,
but not vice versa

� show with env or echo $var

� standard environment variables include:

– HOME = home directory

– PATH = list of directories to search

– TERM = type of terminal (vt100, ...)

– TZ = timezone (e.g., US/Eastern)

� example:

sh$ echo $TERM
vt100

cs3157-fall2002-sklar-lect08 14� �

� �

sh (11) — looping constructs

� similar to C/Java constructs, but with commands

� until test-commands; do consequent-commands; done

� while test-commands; do consequent-commands; done

� for name [in words ...]; do commands; done

� also on separate lines

� break and continue control loop

cs3157-fall2002-sklar-lect08 15� �

� �

sh (12) — loop examples
� while

i=0
while [$i -lt 10]; do
echo "i=$i"
((i=$i+1)) # same as let "i=$i+1"

done

� for

for counter in ‘ls *.c‘; do
echo $counter

done

cs3157-fall2002-sklar-lect08 16� �

� �

sh (13) — if

if test-commands; then
consequent-commands;
[elif more-test-commands; then
more-consequents;]
[else alternate-consequents;]
fi

cs3157-fall2002-sklar-lect08 17� �

� �

sh (14) — case

� example:

case test-var in
value1) consequent-commands;;
value2) consequent-commands;;
*) default-commands;
esac

� pattern matching:

– ?) matches a string with exactly one character

– ?*) matches a string with one or more characters

– [yY]|[yY][eE][sS]) matches y, Y, yes, YES, yES...

– /*/*[0-9]) matches filename with wildcards like /xxx/yyy/zzz3

– ’does it match?’ matches ”does it match?” — with quote, shell doesn’t ignore
spaces or interpret ?

– "$match") matches the text match

cs3157-fall2002-sklar-lect08 18� �

� �

sh (15) — expansion

� biggest difference from traditional programming languages

� shell substitutes and executes

� order:

– brace expansion

– tilde expansion

– parameter and variable expansion

– command substitution

– arithmetic expansion

– word splitting

– filename expansion

cs3157-fall2002-sklar-lect08 19� �

� �

sh (16) — brace expansion
� expand comma-separated list of strings into separate words:

sh$ echo a{d,c,b}e
ade ace abe

� useful for generating list of filenames:

sh$ mkdir hw{1,2,3}
sh$ ls
hw1 hw2 hw3

cs3157-fall2002-sklar-lect08 20� �

� �

sh (17) — tilde expansion

� expands to $HOME

� examples: cs3157

�

/u/5/c/cs3157
/html

�

/home/sklar/html

cs3157-fall2002-sklar-lect08 21� �

� �

sh (18) — command substitution

� replace $(command) or ‘command‘ by stdout of executing command

� can be used to execute content of variables:

x=ls
echo ‘ls‘

� danger! don’t mess with built-in command names...

cs3157-fall2002-sklar-lect08 22� �

� �

sh (19) — filename expansion

� any word containing *?([is considered a pattern

� * matches any string

� ? matches any single character

� [...] matches any of the enclosed characters

cs3157-fall2002-sklar-lect08 23� �

� �

sh (20) — redirections
� stdin, stdout and stderr may be redirected

� < redirects stdin (0) to come from a file

� > redirects stdout (1) to go to file

� >> appends stdout to the end of a file

� &> redirects stderr (2)

� >& redirects stdout and stderr, e.g.: 2>&1 sends stderr to the same place that
stdout is going

� << gets input from a here document, i.e., the input is what you type, rather than reading
from a file

cs3157-fall2002-sklar-lect08 24� �

� �

built-in commands (1)

� alias, unalias — create or remove a pseudonym or shorthand for a command or
series of commands

� jobs, fg, bg, stop, notify — control process execution

� command — execute a simple command

� cd, chdir, pushd, popd, dirs — change working directory

� echo — display a line of text

� history, fc — process command history list

� set, unset, setenv, unsetenv, export — shell built-in functions to
determine the characteristics for environmental variables of the current shell and its
descendents

� getopts — parse utility options

� hash, rehash, unhash, hashstat — evaluate the internal hash table of the
contents of directories

� kill — send a signal to a process

cs3157-fall2002-sklar-lect08 25� �

� �

built-in commands (2)

� pwd — print name of current/working directory

� shift — shell built-in function to traverse either a shell’s argument list or a list of
field-separated words

� readonly — shell built-in function to protect the value of the given variable from
reassignment

� source — execute a file as a shell script

� suspend — shell built-in function to halt the current shell

� test — check file types and compare values

� times — shell built-in function to report time usages of the current shell

� trap, onintr — shell built-in functions to respond to (hardware) signals

� type — write a description of command type

� typeset, whence — shell built-in functions to set/get attributes and values for shell
variables and functions

cs3157-fall2002-sklar-lect08 26� �

� �

built-in commands (3)

� limit, ulimit, unlimit — set or get limitations on the system resources
available to the current shell and its descendents

� umask — get or set the file mode creation mask

cs3157-fall2002-sklar-lect08 27� �

