e N (7 R
lecture #11 — wed oct 9, 2002 what is a process? (1)
® news o fundamental to almost all operating systems
— homework #3 will be posted later today e = program in execution
® go to recitations! o address space, usually separate
— material in recitations will be tools that we are NOT covering in class e program counter, stack pointer, hardware registers
— hand-outs will be given in recitation o simple computer: one program, never stops
— some quiz questions will be on material covered in recitation
— CRF has set it up so that you can use the machines in the CLIC lab during recitation,
even if you don’t have a CS account
o today
— unix processes and threads and sockets
— sources:
x lecture slides by Henning Schulzrinne, cs3995, spring 2002
* http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
©s3157-fall 2002-sklar-lect11 cs3157-fall 2002-sklar-lect11
- _/ _/
- N I
what is a process? (2) process relationships
o timesharing system: alternate between processes, interrupted by OS: e process tree structure: child processes
—runon CPU e inherit properties from parent
— clock interrupt happens e processes can:
— save process state _ terminate
+ registers (PC, SP, numeric) — request more (virtual) memory
* memory Znap X) ibl d to disk — wait for a child process to terminate
* memory (core image) — possibly swapped to dis -
y g P y swapp — overlay program with different one
* — process table
. - send messages to other processes
— continue some other process
©s3157-fall2002-sklar-lect11 €s3157-fall 2002-sklar-lect11
- AN J

e N R
processes process creation
o in reality, each CPU can only run one program at a time o processes are created:
® but it appears to the user that many people are getting short (10-100 ms) time slices — system initialization
— pseudo-parallelism — multiprogramming — by another process
— modeled as sequential processes — user request (from shell)
— context switch — batch job (timed, Unix at or cron)
o foreground processes interact with user
e background processes don’t (also called daemons)
©s3157-fall 2002-sklar-lect11 5 cs3157-fall 2002-sklar-lect11
o _J _J
- N I
unix processes — example (1) unix processes — example (2)
e the ps command gives you information on the processes that are currently running (in e process 0 — process scheduler (“swapper”) system process
unix) e process 1 — init process, invoked after bootstrap (/ sbi n/init)
uni x$ ps -ef o (note: unix ps is like the windows task manager)
Ul D PID PPID C STIME TTY TI ME CMVD
r oot 0 0 0 Mar 31 ? 0: 17 sched
r oot 1 0 0 Mar 31 ? 0:09 /etc/init -
root 2 0 O Mar 31 ? 0: 00 pageout
r oot 3 0O 0O Mir 317 54:35 fsflush
r oot 334 1 0 Mar 31 ? 0: 00 /usr/lib/saf/sac|-
root 24695 1 0 19:38:45 console 0:00 /usr/lib/saf/ttypon
r oot 132 1 0 Mar 31 ? 1: 57 /usr/local /sbin/sshe
r oot 178 1 0 Mar 31 ? 0: 01 /usr/sbhin/inetd {s
daenon 99 1 0 Mar 31 ? 0: 00 /shin/lpd
r oot 139 1 0 Mar 31 ? 0: 37 /usr/ sbin/rpcbind
r oot 119 1 0 Mar 31 ? 0: 06 /usr/sbin/in.rdisc|-
r oot 142 1 0 Mar 31 ? 0: 00 /usr/sbin/ keyser
¢s3157-fall2002-sklar-lect11 7 ©s3157-fall2002-sklar-lect11
- AN J

e N (7 R
unix process creation: forking fork()
#i ncl ude <sys/types. h> o called once, returns twice
#i ncl ude <uni std. h> o child: returns 0
pid_t fork(void); .
int v = 42 e parent: process ID of child process
if ((pid=fork()) <0) { o hoth parent and child continue executing after fork
perror("fork"); child is clone of parent (copy!
exit(1); ° p (copy!)
} o copy-on-write: only copy page if child writes
else if (pid==0) { o all file descriptors are duplicated in child
; " ahi o 0 " ; ; .
\p/):rnt f("child % of parent %\n", getpid(), getppid()); ~ including file offset
} ' — network servers: often child and parent close unneeded file descriptors
el se {
sl eep(10);
}
©s3157-fall 2002-sklar-lect11 9 cs3157-fall 2002-sklar-lect11 10
- _/ _/
- N I
user identities aside: file permissions
e who we really are: real user and group 1D SIRUSR user-rea_d
S_IWUSR | user-write
— taken from / et ¢/ passwd file: S IXUSR | user-execute
ei s2003: asvy735: 95548: 316: ELI ZABETH | SKLAR, , , :/u/ 3/ e/ ei s2003} / pi S_IRGRP | group-read
o check file access permissions: effective user and group ID, supplementary group 1D S-IWGRP | group-write
. . S_IXGRP | group-execute
— supplementary IDs via group membership: S IROTH |other-read
/etc/ group S_IWOTH | other-write
— special bits for file: “when this file is executed, set the effective IDs to be the owner of S IXOTH | other-execute
the file”
— set-user-1D bit, set-group-1D bit
x [usr/ bi n/ passwd needs to access password files
©s3157-fall2002-sklar-lect11 11 €s3157-fall 2002-sklar-lect11 12
- AN J

e N (7 R
process identifiers process properties inherited
p? dt getpi Q(vo? d); . process identifier « user and group ids
pidt getpgid(pidt pid);|processgroup]
pidt getppid(void); parent PID ® process group id
uidt getuid(void); real user ID o controlling terminal
u! dt get E!JI d(v_m d); effective user ID « setuid flag
gidt getgid(void); real group 1D o
gidt getegid(void); effective group 1D o current working directory
e root directory (chroot)
o file creation mask
 signal masks
o close-on-exec flag
e environment
e shared memory
 resource limits
©s3157-fall 2002-sklar-lect11 13 cs3157-fall 2002-sklar-lect11 14
o _J _J
- N I
differences parent-child waiting for a child to terminate (1)
e return value of f or k() e asynchronous event
e process IDs and parent process IDs e SIGCHLD signal
e accounting information process can block waiting for child termination
o file locks pid = fork();
e pending alarms s
if (wait(&tatus) !'=pid) {
/] something’s wong
}
©s3157-fall2002-sklar-lect11 15 €s3157-fall 2002-sklar-lect11 16
- AN J

e N R
waiting for a child to terminate (2) race conditions
pid_t waitpid(pid_t pid, int *statloc, int options); o race = shared data and outcome depends on the order in which processes run
pi d = —1 any child process e e.g., parent or child runs first?
pid>0 specific process o waiting for parent to terminate
pid=0 any child with some process group id g for par
pid<0 anychildwithPID = abs(pid) o generally, need some signaling mechanism
— signals
— stream pipes
©s3157-fall 2002-sklar-lect11 17 cs3157-fall 2002-sklar-lect11 18
- _/ _/
- N I

exec: running another program

exec example

o replace current process by new program char *env_init[] = { "USER=unknown", "PATH=/tnp", NULL };
— text, data, heap, stack . . .
int main(void) {
#i ncl ude <uni std. h> pid_t pid;
int execl(const char *path, const char *argo0, , if ((pid="fork()) <0) perror("fork error");
const char *argn, char * /*NULL*/); else if (pid=0) {
int execv(const char *path, char *const argv[]); if (execle("echoall", "echoall", "nyargl",
int execle(const char *path,char *const argO[], , "My AR&", NULL, env_init) <0)
const char *argn, char * /*NULL*/, char *const envp[]|) perror("exec");
int execve(const char *path, char *const argv[], }
char *const envp[]); if (waitpid(pid, NULL, O) < O) perror("wait error");
int execlp(const char *file, const char *argo0, , printf("child done\n");
const char *argn, char * /*NULL*/); exit(0);
int execvp(const char *file, char *const argv[]); 1
o file: absolute (fully qualified) path or one of the $PATH entries
©s3157-fall2002-sklar-lect11 19 €s3157-fall 2002-sklar-lect11 20
AN

e N (7 R
another alternative: use syst en(’) to execute a command threads
#i nclude <stdlib. h> e process: address space + single thread of control
int systenm(const char *string); sometimes want multiple threads of control (flow) in same address space
o invokes command string from program o quasi-parallel
eeg,systen("date > file"); o threads separate resource grouping and execution
* handled by shell (/ usr/ bi n/ sh) o thread: program counter, registers, stack
e also called lightweight processes
o multithreading: avoid blocking when waiting for resources
— multiple services running in parallel
e state: running, blocked, ready, terminated
©s3157-fall 2002-sklar-lect11 21 cs3157-fall 2002-sklar-lect11 22
o 2N _J
- N I
why threads? thread variants
o parallel execution e POSIX (pthreads)
e shared resources — faster communication without serialization e Sun threads (mostly obsolete)
e easier to create and destroy than processes (100x) o Java threads
o useful if some are I/0-bound — overlap computation and 1/0
e easy porting to multiple CPUs
©s3157-fall2002-sklar-lect11 23 ©s3157-fall2002-sklar-lect11 24
- AN J

e N (7 R
creating a thread network server example
int pthread_create(pthread_t *tid, o |ots of little requests (hundreds to thousands a second)
const . pi hread_attr —i . o simple model: new thread for each request
vo! d *(*func)(void *), — doesn’t scale (memory, creation overhead)
void *arg);
o dispatcher reads incoming requests
e start function f unc with argument ar g in new thread L i i .
o picks idle worker thread and sends it message with pointer to request
e return 0 if ok, > 0 if not .
o if thread blocks, another one works on another request
o careful with ar g argument .
o limit number of threads
©s3157-fall 2002-sklar-lect11 25 cs3157-fall 2002-sklar-lect11 26
- _/ _/
4 N I
worker thread leaving a thread
while (1) { o threads can return value, but typically NULL
wai t for work(&buf) ; e just return from function (return voi d *)
l ook in cache .] .
if not in cache e main process exits — Kkill all threads
read page from di sk epthreadexit(void *status);
return page
}
©s3157-fall2002-sklar-lect11 27 €s3157-fall 2002-sklar-lect11 28
- DN J

e N R
thread synchronization sockets (1)
e mutual exclusion, locks: mutex o the client server model
— protect shared or global data structures — used by most interprocess communication (i.e., two processes which will be
o synchronization: condition variables communicating with each other)
— one of the two processes, the client, connects to the other process, the server,
o semaphores . . -
typically to make a request for information
- e.g., a person who makes a phone call to another person
o the client needs to know of the existence of and the address of the server
e but the server does not need to know the address of the client before the connection is
established, or even that the client exists
e once a connection is established, both sides can send and receive information
©s3157-fall 2002-sklar-lect11 29 cs3157-fall 2002-sklar-lect11 30
o NG J
e N 7 I
sockets (2) sockets (3)
o implementation o establishing a server side socket
o system calls for establishing a connection are somewhat different for the client and the o five steps:
server, but both involve the basic construct of a socket 1. create a socket with the socket () system call
e asocket isone end of an interprocess communication channel 2. bind the socket to an address using the bi nd() system call
o the two processes each establish their own socket —for a server socket on the Internet, an address consists of a port number on the
e e.g., each person in a phone call needs to have a phone host machine
3. listen for connections with the | i st en(’) system call
4. accept a connection with the accept () system call
5. send and receive data, using the r ead() andwrite() system calls
¢s3157-fall2002-sklar-lect11 31 ©s3157-fall2002-sklar-lect11 32
o O\ %

e N (7 R
sockets (4) socket types (1)
o establishing a client side socket e when creating a socket, you need to specify
o three steps: — address domain
1. create a socket with the socket () system call — socket type
2. connect the socket to the address of the server using the connect () system call o two widely used address domains:
3. send and receive data, using the r ead() andwrit e() system calls — unix domain
— Internet domain
o each has its own address format
©s3157-fall 2002-sklar-lect11 33 cs3157-fall 2002-sklar-lect11 34
o _J _J
- N I
socket types (2) socket types (3)
e unix domain sockets o two widely used socket types:
— communication between two processes that share a common file system — stream sockets
— address is a character string which is basically an entry in the file system — datagram sockets
o Internet domain sockets o stream sockets:
— communication between two processes on the Internet — communication is a continuous stream of characters
— address consists of: — communications protocol = TCP (Transmission Control Protocol)
* Internet address of the host machine e datagram sockets:
(every computer on the Internet has a unique 32-bit address, often referred to as its .
IP address) - read entire messages at once
* port number (16-bit unsigned integers; the lower numbers are reserved in unix for - comn;_unllcatlons protocol = UDP (Unix Datagram Protocol)
standard services; generally, port numbers above 2000 are available) (unreliable and message oriented)
o so we’ll stick with TCP...
¢s3157-fall2002-sklar-lect11 35 €s3157-fall 2002-sklar-lect11 36
- AN J

