
� �

lecture #11 — wed oct 9, 2002

� news

– homework #3 will be posted later today

� go to recitations!

– material in recitations will be tools that we are NOT covering in class

– hand-outs will be given in recitation

– some quiz questions will be on material covered in recitation

– CRF has set it up so that you can use the machines in the CLIC lab during recitation,
even if you don’t have a CS account

� today

– unix processes and threads and sockets

– sources:

� lecture slides by Henning Schulzrinne, cs3995, spring 2002

� http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

cs3157-fall2002-sklar-lect11 1� �

� �

what is a process? (1)

� fundamental to almost all operating systems

� = program in execution

� address space, usually separate

� program counter, stack pointer, hardware registers

� simple computer: one program, never stops

cs3157-fall2002-sklar-lect11 2� �

� �

what is a process? (2)

� timesharing system: alternate between processes, interrupted by OS:

– run on CPU

– clock interrupt happens

– save process state

� registers (PC, SP, numeric)

� memory map

� memory (core image) � possibly swapped to disk

� � process table

– continue some other process

cs3157-fall2002-sklar-lect11 3� �

� �

process relationships
� process tree structure: child processes

� inherit properties from parent

� processes can:

– terminate

– request more (virtual) memory

– wait for a child process to terminate

– overlay program with different one

– send messages to other processes

cs3157-fall2002-sklar-lect11 4� �

� �

processes

� in reality, each CPU can only run one program at a time

� but it appears to the user that many people are getting short (10-100 ms) time slices

– pseudo-parallelism � multiprogramming

– modeled as sequential processes

– context switch

cs3157-fall2002-sklar-lect11 5� �

� �

process creation

� processes are created:

– system initialization

– by another process

– user request (from shell)

– batch job (timed, Unix at or cron)

� foreground processes interact with user

� background processes don’t (also called daemons)

cs3157-fall2002-sklar-lect11 6� �

� �

unix processes — example (1)

� the ps command gives you information on the processes that are currently running (in
unix)

unix$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 0 0 0 Mar 31 ? 0:17 sched
root 1 0 0 Mar 31 ? 0:09 /etc/init -
root 2 0 0 Mar 31 ? 0:00 pageout
root 3 0 0 Mar 31 ? 54:35 fsflush
root 334 1 0 Mar 31 ? 0:00 /usr/lib/saf/sac -t 300
root 24695 1 0 19:38:45 console 0:00 /usr/lib/saf/ttymon
root 132 1 0 Mar 31 ? 1:57 /usr/local/sbin/sshd
root 178 1 0 Mar 31 ? 0:01 /usr/sbin/inetd -s

daemon 99 1 0 Mar 31 ? 0:00 /sbin/lpd
root 139 1 0 Mar 31 ? 0:37 /usr/sbin/rpcbind
root 119 1 0 Mar 31 ? 0:06 /usr/sbin/in.rdisc -s
root 142 1 0 Mar 31 ? 0:00 /usr/sbin/keyserv

cs3157-fall2002-sklar-lect11 7� �

� �

unix processes — example (2)
� process 0 — process scheduler (“swapper”) system process

� process 1 — init process, invoked after bootstrap (/sbin/init)

� (note: unix ps is like the windows task manager)

cs3157-fall2002-sklar-lect11 8� �

� �

unix process creation: forking

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
int v = 42;
if ((pid = fork()) < 0) {
perror("fork");
exit(1);

}
else if (pid == 0) {
printf("child %d of parent %d\n", getpid(), getppid());
v++;

}
else {
sleep(10);

}

cs3157-fall2002-sklar-lect11 9� �

� �

fork()

� called once, returns twice

� child: returns 0

� parent: process ID of child process

� both parent and child continue executing after fork

� child is clone of parent (copy!)

� copy-on-write: only copy page if child writes

� all file descriptors are duplicated in child

– including file offset

– network servers: often child and parent close unneeded file descriptors

cs3157-fall2002-sklar-lect11 10� �

� �

user identities

� who we really are: real user and group ID

– taken from /etc/passwd file:

eis2003:asvy735:95548:316:ELIZABETH I SKLAR,,,:/u/3/e/eis2003:/bin/bash

� check file access permissions: effective user and group ID, supplementary group ID

– supplementary IDs via group membership:
/etc/group

– special bits for file: “when this file is executed, set the effective IDs to be the owner of
the file”

� set-user-ID bit, set-group-ID bit

� /usr/bin/passwd needs to access password files

cs3157-fall2002-sklar-lect11 11� �

� �

aside: file permissions

S IRUSR user-read
S IWUSR user-write
S IXUSR user-execute
S IRGRP group-read
S IWGRP group-write
S IXGRP group-execute
S IROTH other-read
S IWOTH other-write
S IXOTH other-execute

cs3157-fall2002-sklar-lect11 12� �

� �

process identifiers

pid t getpid(void); process identifier
pid t getpgid(pid t pid); process group
pid t getppid(void); parent PID
uid t getuid(void); real user ID
uid t geteuid(void); effective user ID
gid t getgid(void); real group ID
gid t getegid(void); effective group ID

cs3157-fall2002-sklar-lect11 13� �

� �

process properties inherited

� user and group ids

� process group id

� controlling terminal

� setuid flag

� current working directory

� root directory (chroot)

� file creation mask

� signal masks

� close-on-exec flag

� environment

� shared memory

� resource limits

cs3157-fall2002-sklar-lect11 14� �

� �

differences parent-child

� return value of fork()

� process IDs and parent process IDs

� accounting information

� file locks

� pending alarms

cs3157-fall2002-sklar-lect11 15� �

� �

waiting for a child to terminate (1)
� asynchronous event

� SIGCHLD signal

� process can block waiting for child termination

pid = fork();
...
if (wait(&status) != pid) {
// something’s wrong

}

cs3157-fall2002-sklar-lect11 16� �

� �

waiting for a child to terminate (2)

pid_t waitpid(pid_t pid, int *statloc, int options);

pid � �
�

any child process
pid

� �

specific process
pid � �

any child with some process group id
pid

� �

any child with PID = abs(pid)

cs3157-fall2002-sklar-lect11 17� �

� �

race conditions

� race = shared data and outcome depends on the order in which processes run

� e.g., parent or child runs first?

� waiting for parent to terminate

� generally, need some signaling mechanism

– signals

– stream pipes

cs3157-fall2002-sklar-lect11 18� �

� �

exec: running another program

� replace current process by new program

– text, data, heap, stack

#include <unistd.h>
int execl(const char *path, const char *arg0, ...,

const char *argn, char * /*NULL*/);
int execv(const char *path, char *const argv[]);
int execle(const char *path,char *const arg0[], ... ,

const char *argn, char * /*NULL*/, char *const envp[]);
int execve(const char *path, char *const argv[],

char *const envp[]);
int execlp(const char *file, const char *arg0, ...,

const char *argn, char * /*NULL*/);
int execvp(const char *file, char *const argv[]);

� file: absolute (fully qualified) path or one of the $PATH entries

cs3157-fall2002-sklar-lect11 19� �

� �

exec example

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main(void) {
pid_t pid;
if ((pid = fork()) < 0) perror("fork error");
else if (pid == 0) {
if (execle("echoall", "echoall", "myarg1",

"MY ARG2", NULL, env_init) < 0)
perror("exec");

}
if (waitpid(pid, NULL, 0) < 0) perror("wait error");
printf("child done\n");
exit(0);

}

cs3157-fall2002-sklar-lect11 20� �

� �

another alternative: use system() to execute a command

#include <stdlib.h>
int system(const char *string);

� invokes command string from program

� e.g., system("date > file");

� handled by shell (/usr/bin/sh)

cs3157-fall2002-sklar-lect11 21� �

� �

threads

� process: address space + single thread of control

� sometimes want multiple threads of control (flow) in same address space

� quasi-parallel

� threads separate resource grouping and execution

� thread: program counter, registers, stack

� also called lightweight processes

� multithreading: avoid blocking when waiting for resources

– multiple services running in parallel

� state: running, blocked, ready, terminated

cs3157-fall2002-sklar-lect11 22� �

� �

why threads?

� parallel execution

� shared resources � faster communication without serialization

� easier to create and destroy than processes (100x)

� useful if some are I/O-bound � overlap computation and I/O

� easy porting to multiple CPUs

cs3157-fall2002-sklar-lect11 23� �

� �

thread variants
� POSIX (pthreads)

� Sun threads (mostly obsolete)

� Java threads

cs3157-fall2002-sklar-lect11 24� �

� �

creating a thread

int pthread_create(pthread_t *tid,
const pthread_attr_t *,
void *(*func)(void *),
void *arg);

� start function func with argument arg in new thread

� return

�

if ok, � �

if not

� careful with arg argument

cs3157-fall2002-sklar-lect11 25� �

� �

network server example

� lots of little requests (hundreds to thousands a second)

� simple model: new thread for each request

� doesn’t scale (memory, creation overhead)

� dispatcher reads incoming requests

� picks idle worker thread and sends it message with pointer to request

� if thread blocks, another one works on another request

� limit number of threads

cs3157-fall2002-sklar-lect11 26� �

� �

worker thread

while (1) {
wait for work(&buf);
look in cache
if not in cache
read page from disk

return page
}

cs3157-fall2002-sklar-lect11 27� �

� �

leaving a thread
� threads can return value, but typically NULL

� just return from function (return void *)

� main process exits � kill all threads

� pthread exit(void *status);

cs3157-fall2002-sklar-lect11 28� �

� �

thread synchronization

� mutual exclusion, locks: mutex

– protect shared or global data structures

� synchronization: condition variables

� semaphores

cs3157-fall2002-sklar-lect11 29� �

� �

sockets (1)

� the client server model

– used by most interprocess communication (i.e., two processes which will be
communicating with each other)

– one of the two processes, the client, connects to the other process, the server,
typically to make a request for information

– e.g., a person who makes a phone call to another person

� the client needs to know of the existence of and the address of the server

� but the server does not need to know the address of the client before the connection is
established, or even that the client exists

� once a connection is established, both sides can send and receive information

cs3157-fall2002-sklar-lect11 30� �

� �

sockets (2)

� implementation

� system calls for establishing a connection are somewhat different for the client and the
server, but both involve the basic construct of a socket

� a socket is one end of an interprocess communication channel

� the two processes each establish their own socket

� e.g., each person in a phone call needs to have a phone

cs3157-fall2002-sklar-lect11 31� �

� �

sockets (3)
� establishing a server side socket

� five steps:

1. create a socket with the socket() system call

2. bind the socket to an address using the bind() system call

– for a server socket on the Internet, an address consists of a port number on the
host machine

3. listen for connections with the listen() system call

4. accept a connection with the accept() system call

5. send and receive data, using the read() and write() system calls

cs3157-fall2002-sklar-lect11 32� �

� �

sockets (4)

� establishing a client side socket

� three steps:

1. create a socket with the socket() system call

2. connect the socket to the address of the server using the connect() system call

3. send and receive data, using the read() and write() system calls

cs3157-fall2002-sklar-lect11 33� �

� �

socket types (1)

� when creating a socket, you need to specify

– address domain

– socket type

� two widely used address domains:

– unix domain

– Internet domain

� each has its own address format

cs3157-fall2002-sklar-lect11 34� �

� �

socket types (2)

� unix domain sockets

– communication between two processes that share a common file system

– address is a character string which is basically an entry in the file system

� Internet domain sockets

– communication between two processes on the Internet

– address consists of:

� Internet address of the host machine
(every computer on the Internet has a unique 32-bit address, often referred to as its
IP address)

� port number (16-bit unsigned integers; the lower numbers are reserved in unix for
standard services; generally, port numbers above 2000 are available)

cs3157-fall2002-sklar-lect11 35� �

� �

socket types (3)
� two widely used socket types:

– stream sockets

– datagram sockets

� stream sockets:

– communication is a continuous stream of characters

– communications protocol = TCP (Transmission Control Protocol)

� datagram sockets:

– read entire messages at once

– communications protocol = UDP (Unix Datagram Protocol)
(unreliable and message oriented)

� so we’ll stick with TCP...

cs3157-fall2002-sklar-lect11 36� �

