
� �

lecture #16 — mon oct 28, 2002

� news

– homework #3 due today

– homework #4 out today – replacing quiz #3

– see web page for updates...

� today

– programming tools overview

– configuration management

– sources:

� some slides from H. Schulzrinne, cs3995, spring 2002

cs3157-fall2002-sklar-lect16 1� �

� �

software development models.

� integrated development environment (IDE)

– integrate code editor, compiler, build environment, debugger

– graphical tool

– single or multiple languages

– VisualStudio, JCreator, Forte, ...

� Unix model

– individual tools, command-line

cs3157-fall2002-sklar-lect16 2� �

� �

source code management.

� problem: lots of people working on the same project

– source code (C, Perl, ...)

– documentation

– specification (protocol specs)

� mostly on different areas

� different versions

– released — maintenance only

– stable — about to be released, production use

– development, beta

� different hardware and OS versions

cs3157-fall2002-sklar-lect16 3� �

� �

configuration management.
� version control system

� there are many popular tools:

– CVS

– RCS

– SCCS

� collection of directories, one for each “module”

� release control

� version control

� there is a single master copy (“repository”) and local (developer) copies

cs3157-fall2002-sklar-lect16 4� �



� �

about rcs.

� it doesn’t build a system (alone)

� it isn’t project management (alone)

� all changes are isolated vs. single logical change

� it can help with bug fix tracking

� it can help with track change verification

� it doesn’t test program (regression testing)

� it is not a work flow or process model

cs3157-fall2002-sklar-lect16 5� �

� �

setting up a repository.

� create a directory for the repository:

unix$ mkdir RCS

which creates an RCS directory under your current working directory

cs3157-fall2002-sklar-lect16 6� �

� �

adding a file to the repository.

� use the “check in” command:

unix$ ci movie.c
RCS/movie.c,v <-- movie.c
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> this file manipulates the movie database
>> .
initial revision: 1.1
done

� you’ll be asked to enter a description of the file you are adding to the repository

� you only have to do this the first time a file is checked in

cs3157-fall2002-sklar-lect16 7� �

� �

what’s in the directory now?
� the directory:

unix$ ls -lt RCS
total 8
-r-------- 1 cs3157 library 4338 Oct 28 11:27 movie.c,v

� notice that the file is only read-only by owner

cs3157-fall2002-sklar-lect16 8� �



� �

the RCS file...

head 1.1;
access;
symbols;
locks; strict;
comment @ * @;

1.1
date 2002.10.28.16.27.27; author cs3157; state Exp;
branches;
next ;

desc
@this file manipulates the movie database
@

1.1
log
@Initial revision
@
text
@/* movie.c */

#include <stdio.h>
etc

cs3157-fall2002-sklar-lect16 9� �

� �

checking a file out of the repository.

� there are two modes:

– read-only

– read-write

� command for read-only:

unix$ co movie.c
RCS/movie.c,v --> movie.c
revision 1.1
done

� command for read-write:

unix$ co -l movie.c
RCS/movie.c,v --> movie.c
revision 1.1 (locked)
done

cs3157-fall2002-sklar-lect16 10� �

� �

locking files.

� checking out a file in read-write mode is called checking it out with a lock

� this means that only the user who checked out the file can check it back in and unlock the
file

� you can also lock a file that is already checked out:

unix$ rcs -l movie.c

� if the file is already locked by another user, you’ll be asked if you want to break the lock

� this can be bad...

cs3157-fall2002-sklar-lect16 11� �

� �

getting file information.
� the rlog command is used to get information about files in the repository

unix$ rlog movie.c

RCS file: RCS/movie.c,v
Working file: movie.c
head: 1.1
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 1; selected revisions: 1
description:
this file manipulates the movie database
----------------------------
revision 1.1
date: 2002/10/28 16:27:27; author: cs3157; state: Exp;
Initial revision
=============================================================================

cs3157-fall2002-sklar-lect16 12� �



� �

finding out about locks.

� you can use rlog to find out which files are locked

� to find out which files are locked:

unix$ rlog -R -L RCS/*
RCS/movie.c,v

cs3157-fall2002-sklar-lect16 13� �

� �

checking changed files back in.

� once you make a change to a file (and test it), you should check the file back into the
repository

unix$ ci movie.c
RCS/movie.c,v <-- movie.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’ or end of file:
>> added comments
>> .
done

� you’ll be asked to enter a message describing the changes you made

� if the file is unchanged, RCS is smart enough not to increment the revision number:

unix$ ci movie.c
RCS/movie.c,v <-- movie.c
file is unchanged; reverting to previous revision 1.1
done

cs3157-fall2002-sklar-lect16 14� �

� �

keeping the working directory clean.

� use the rcsclean command

� this removes from the current working directory all files that are checked out in
read-only mode but have not been changed since they were checked out

unix$ rcsclean
rm -f movie.h

cs3157-fall2002-sklar-lect16 15� �

� �

finding differences.
� the rcsdiff command is used to show the differences between the version in your current

working directory and the version that was last checked in to RCS

unix$ rcsdiff movie.c
===================================================================
RCS file: RCS/movie.c,v
retrieving revision 1.2
diff -r1.2 movie.c
4a5
> this program was developed by prof sklar for fall 2002.

cs3157-fall2002-sklar-lect16 16� �



� �

using with your makefile.

� it is handy to integrate RCS into your makefile

� add a DEFAULT rule that will check files out of RCS for the purpose of building your
project:

.DEFAULT:
co $(RCS)/$@,v

� add this line just after the SUFFIXES line

� you can also add rcsclean to your clean rule:

clean:
rcsclean
rm *.o

cs3157-fall2002-sklar-lect16 17� �

� �

ident

� you can record version information directly in your source code

� place a line like this:

static char const rcsid[] = "$Id$";

in the global declaration section of your source code files

� after you check the file in and check it out again, RCS will automatically expand the tag:

static char const rcsid[] =
"$Id: movie.c,v 1.5 2002/10/28 16:55:09 cs3157 Exp $";

� now you can use the rcsid variable in your program

� you can also use the ident command to see the values:

unix$ ident movie.c
movie.c:

$Id: movie.c,v 1.5 2002/10/28 16:55:09 cs3157 Exp $

cs3157-fall2002-sklar-lect16 18� �

� �

revision tagging.

� each revision increases rightmost number by one: 1.1, 1.2, ...

� more than one period implies branches

� versions of file = RCS revisions

� use the rcs command to set revisions and branches

� do man rcsfile for more information

� there’s also a script called rcsfreeze which is handy for these functions, but it is not a
standard part of RCS (unfortunately)

cs3157-fall2002-sklar-lect16 19� �


