lecture #16 — mon oct 28, 2002

® NEWS

— homework #3 due today
— homework #4 out today — replacing quiz #3
— see web page for updates...

e today

— programming tools overview
— configuration management
— sources:
x some slides from H. Schulzrinne, ¢s3995, spring 2002

cs3157-fall2002-sklar-lect16

N

N

software development models.

e integrated development environment (IDE)

— integrate code editor, compiler, build environment, debugger
— graphical tool

— single or multiple languages

— VisualStudio, JCreator, Forte, ...

e Unix model

— individual tools, command-line

cs3157-fall2002-sklar-lect16

N

source code management.

e problem: lots of people working on the same project

— source code (C, Perl, ...)
— documentation
— specification (protocol specs)

e mostly on different areas
e different versions

— released — maintenance only
— stable — about to be released, production use
— development, beta

e different hardware and OS versions

cs3157-fall2002-sklar-lect16

N

configuration management.

e version control system
e there are many popular tools:

— CVS
— RCS
- SCCS

e collection of directories, one for each “module”
e release control
e version control

e there is a single master copy (“repository”) and local (developer) copies

cs3157-fall2002-sklar-lect16

N

about rcs.

e it doesn’t build a system (alone)

e it isn’t project management (alone)

e all changes are isolated vs. single logical change
e it can help with bug fix tracking

e it can help with track change verification

e it doesn’t test program (regression testing)

e it is not a work flow or process model

cs3157-fall2002-sklar-lect16

N

setting up a repository.

e create a directory for the repository:

uni x$ nkdir RCS

which creates an RCS directory under your current working directory

cs3157-fall2002-sklar-lect16

adding a file to the repository.

e use the “check in” command:

uni x$ ci novie.c

RCS/ novie.c,v <-- novie.cC

enter description, termnated with single . or end of file:
NOTE: This is NOT the | og nessage!

>> this file mani pul ates the novi e dat abase

>>

initial revision: 1.1

done

e you’ll be asked to enter a description of the file you are adding to the repository

e you only have to do this the first time a file is checked in

cs3157-fall2002-sklar-lect16 7

N

what’s in the directory now?

e the directory:

uni x$ I's -1t RCS
total 8
== - - 1 ¢cs3157 library 4338 Cct 28 11:27 novie.c,V

e notice that the file is only read-only by owner

cs3157-fall2002-sklar-lect16

the RCS file...

head 1.1;
access;
synbol s;

| ocks; strict;
comment @* @

1.1

dat e 2002. 10. 28. 16. 27. 27, aut hor ¢s3157; state Exp;
br anches;

next ;

desc
@his file mani pul ates the novi e dat abase

@

1.1

| og

@nitial revision
@

t ext

@* novie.c */

#i ncl ude <stdi o. h>
etc

cs3157-fall2002-sklar-lect16

N

checking a file out of the repository.

e there are two modes:

— read-only
— read-write

e command for read-only:

uni x$ co novie.c

RCS/ novie.c,v --> novie.c
revision 1.1

done

e command for read-write;

uni x$ co -l novie.c

RCS/ novie.c,v --> novie.cC
revision 1.1 (| ocked)

done

cs3157-fall2002-sklar-lect16

10

N

locking files.

e checking out a file in read-write mode is called checking it out with a lock

e this means that only the user who checked out the file can check it back in and unlock the
file

e you can also lock a file that is already checked out:

uni x$ rcs -1 novie.c

e if the file is already locked by another user, you’ll be asked if you want to break the lock

e this can be bad...

cs3157-fall2002-sklar-lect16 11

N

getting file information.

e the rlog command is used to get information about files in the repository

uni x$ rlog novie.c

RCS file: RCS/ novie.c,v

Working file: novie.c

head: 1.1

br anch:

| ocks: strict

access |ist:

synbol i ¢ nanes:

keyword substitution: kv

total revisions: 1; selected revisions: 1
descri ption:

this file mani pul ates the novi e dat abase
revision 1.1

date: 2002/10/28 16:27:27; author: cs3157; state: Exp;
Initial revision

cs3157-fall2002-sklar-lect16

12

finding out about locks.

e you can use rlog to find out which files are locked

e to find out which files are locked:

uni x$ rlog -R -L RCS/*
RCS/ novie.c, Vv

cs3157-fall2002-sklar-lect16

13

checking changed files back in.

e once you make a change to a file (and test it), you should check the file back into the

repository

uni X$ ci novie.c

RCS/ novie.c,v <-- novie.cC

new revision: 1.2; previous revision: 1.1

enter | og nessage, termnated with single '.’ or end of file:
>> added comments

>>

done

e you’ll be asked to enter a message describing the changes you made

e if the file is unchanged, RCS is smart enough not to increment the revision number:

uni x$ ci novie.c

RCS/ novie.c,v <-- novie.c
file is unchanged; reverting to previous revision 1.1
done
¢s3157-fall2002-sklar-lect16 14

N

keeping the working directory clean.

e use the rcsclean command

e this removes from the current working directory all files that are checked out in
read-only mode but have not been changed since they were checked out

uni x$ rcscl ean
rm-f novie.h

cs3157-fall2002-sklar-lect16 15

finding differences.

e the rcsdiff command is used to show the differences between the version in your current
working directory and the version that was last checked in to RCS

uni x$ rcsdi ff novie.c

RCS file: RCS/ novie.c,V
retrieving revision 1.2
diff -rl.2 novie.c

4a5
> this program was devel oped by prof sklar for fall 2002.
¢s3157-fall2002-sklar-lect16 16

using with your makefile.

e it is handy to integrate RCS into your makefile

e add a DEFAULT rule that will check files out of RCS for the purpose of building your
project:

. DEFAULT:
co $(RCS)/ @V

e add this line just after the SUFFI XES line

e you can also add r cscl ean to your cl ean rule:

cl ean:
rcscl ean
rm=*.o0

cs3157-fall2002-sklar-lect16

17

ident

e you can record version information directly in your source code

e place a line like this:
static char const rcsid[] = "Id";

in the global declaration section of your source code files

e after you check the file in and check it out again, RCS will automatically expand the tag:

static char const rcsid[] =
"$ld: novie.c,v 1.5 2002/10/28 16:55:09 cs3157 Exp $";

e NOw you can use the r csi d variable in your program

e you can also use the ident command to see the values:

uni x$ i dent novie.c
novi e. C:
$l1d: novie.c,v 1.5 2002/10/28 16:55:09 cs3157 Exp $

cs3157-fall2002-sklar-lect16 18

N

revision tagging.

e each revision increases rightmost number by one: 1.1, 1.2, ...
e more than one period implies branches

e versions of file = RCS revisions

e use the rcs command to set revisions and branches

e do man rcsfile for more information

e there’s also a script called rcsfreeze which is handy for these functions, but it is not a
standard part of RCS (unfortunately)

cs3157-fall2002-sklar-lect16

19

