
� �

lecture #16 — wed nov 6, 2002

� news

– homework #4 due friday

– homework #5 posted later today (by midnight)

� today

– software documentation

– user documentation

� sources

– http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

cs3157-fall2002-sklar-lect18 1� �

� �

software documentation.

� also called source code documentation

� is hard to write

� is harder to maintain

� must be up-to-date with the source code, otherwise it’s useless

� think of it as a contract between the programmer and the subsequent programmers that
will use the code

� two methodologies:

– within source code

– external to source code

� first way makes it easier to maintain and keep accurate

cs3157-fall2002-sklar-lect18 2� �

� �

software documentation — bugs.

� two types:

– specification bugs

– code bugs

� differences between how code is specified and how it works

� only one is right (if any)

cs3157-fall2002-sklar-lect18 3� �

� �

software documentation — javadoc.
� Java tool for generating the pretty API documentation you find on the java.sun.com web

site

� easy to use

� good standard

� useful for conventions for other languages

cs3157-fall2002-sklar-lect18 4� �



� �

software documentation — javadoc (2).

� handles four types of source code files:

– class source code files (*.java)

– package comment files

– overview comment files

– miscellaneous unprocessed files

cs3157-fall2002-sklar-lect18 5� �

� �

software documentation — class source code files.

� documentation is in the form of source code comments

� comments contain javadoc tags and HTML tags

� javadoc tags are processed by javadoc

� HTML tags are processed when displayed by a browser

� must immediately precede a declaration of:

– a class

– a field

– a constructor

– a method

� consists of:

– description (comes first)

– block tags (come second)

cs3157-fall2002-sklar-lect18 6� �

� �

software documentation — example.

/**
* Returns an Image object that can then be painted on the screen.
* The url argument must specify an absolute {@link URL}. The name
* argument is a specifier that is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the
* image exists. When this applet attempts to draw the image on
* the screen, the data will be loaded. The graphics primitives
* that draw the image will incrementally paint on the screen.
*
* @param url an absolute URL giving the base location of the image
* name the location of the image, relative to the url argument
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url, String name) {

try {
return getImage(new URL(url, name));

} catch (MalformedURLException e) {
return null;

}
}

cs3157-fall2002-sklar-lect18 7� �

� �

software documentation — details.
� each line is indented to align with the code below the comment

� first line begins with /**

� last line ends with */

� all intervening lines start with *

� first sentence is a short summary of the method

� {@link URL} converts to HTML and points to documentation for the URL class (this
is an example of a javadoc tag)

� separate paragraphs with <p> HTML tag

� insert blank line between description and block tags

� description ends with first line that begins with @

� limit comment lines to 80 characters (or less)

cs3157-fall2002-sklar-lect18 8� �



� �

software documentation — class source code files.

� documentation is in the form of source code comments

� comments contain javadoc tags and HTML tags

� javadoc tags are processed by javadoc

� HTML tags are processed when displayed by a browser

� class/interface tags:

– @see

– @since

– @deprecated

– @serial

– @author

– @version

– {@link}

– {@linkplain}

– {@docRoot}

cs3157-fall2002-sklar-lect18 9� �

� �

software documentation — class source code files (2).

� field tags:

– @see

– @since

– @deprecated

– @serial

– @serialField

– {@link}

– {@linkplain}

– {@docRoot}

– {@value}

cs3157-fall2002-sklar-lect18 10� �

� �

software documentation — class source code files (3).

� constructor and method tags:

– @see

– @since

– @deprecated

– @param

– @return

– @throws (same as @exception)

– @serialData

– {@link}

– {@linkplain}

– {@inheritDoc}

– {@docRoot}

cs3157-fall2002-sklar-lect18 11� �

� �

software documentation — package comment files.
� create a file named package.html and place it in the package directory

� contains one big documentation comment, without the comment separators (/** */
or leading *s)

� comment is in html

� make the first sentence a summary about the package

� do not put a title or any other text between the <body> tag and the first sentence

� package tags:
– @see

– @since

– @deprecated

– @serial

– @author

– @version

– {@link}

– {@linkplain}

– {@docRoot}

cs3157-fall2002-sklar-lect18 12� �



� �

software documentation — overview comment files.

� contains overview documentation for an application or set of packages

� can be anywhere in source code tree and can have any name

� convention is to place it at top level and name it overview.html

� to process it, run

unix$ javadoc -overview <filename>

� make the first sentence a summary about the application or set of packages

� do not put a title or any other text between the <body> tag and the first sentence

� tags:
– @see

– @since

– @author

– @version

– {@link}

– {@linkplain}

– {@docRoot}

cs3157-fall2002-sklar-lect18 13� �

� �

software documentation — miscellaneous unprocessed files.

� contains hardcoded HTML documentation for files that don’t fall into any of the other
categories

� these files are unprocessed by javadoc

� but can be referenced by files that are

� place files in a directory called doc-files, anywhere in the source code tree

� you can have one doc-files directory per package

cs3157-fall2002-sklar-lect18 14� �

� �

software documentation — tags.

� most frequently used tags (in Java API), in this order:

– @author (classes and interfaces only)

– @version (classes and interfaces only)

– @param (methods and constructors only)

– @return (methods only — except void)

– @throws (same as @exception)

– @see

– @since

– @serial (or @serialField or @serialData)

– @deprecated (only if applicable)

� other tags:

– @link and @linkplain

– @value

cs3157-fall2002-sklar-lect18 15� �

� �

software documentation — tag descriptions: @author.
� adds an “Author” entry with the specified name-text to the generated docs when the

-author option is used

� syntax:

@author name-text

� may contain multiple @author tags

cs3157-fall2002-sklar-lect18 16� �



� �

software documentation — tag descriptions: @version.

� adds a “Version” subheading with the specified version-text to the generated docs when
the -version option is used

� syntax:

@version version-text

� a doc comment may contain at most one @version tag

� use RCS automated version identifier ($Id$) to fill in version-text

cs3157-fall2002-sklar-lect18 17� �

� �

software documentation — tag descriptions: @param.

� adds a parameter to the “Parameters” section

� syntax:

@param parameter-name description

� should describe the data type of the parameter

� should describe how the parameter is used within the method

cs3157-fall2002-sklar-lect18 18� �

� �

software documentation — tag descriptions: @return.

� adds a “Returns” section with the description text

� syntax:

@return description

� should specify the data type of the return value

� should describe the range of possible return values

cs3157-fall2002-sklar-lect18 19� �

� �

software documentation — tag descriptions: @throws.
� adds a “Throws” subheading to the generated documentation, with the class-name and

description text.

� syntax:

@throws class-name description

� class-name is the name of the exception that may be thrown by the method

� multiple @throws tags can be used

� documentation is copied from an overridden method to a subclass only when the
exception is explicitly declared in the overridden method (or implemented)

� use {@inheritDoc} to force inheriting of documentation

cs3157-fall2002-sklar-lect18 20� �



� �

software documentation — tag descriptions: @see.

� adds a “See Also” heading with a link or text entry that points to reference

� syntax:

@see reference

� three forms:

@see ‘‘string’’

@see <a href=‘‘URL#value’’>label</a>

@see package.class#member label

cs3157-fall2002-sklar-lect18 21� �

� �

software documentation — tag descriptions: @since.

� adds a “Since” heading with the specified since-text to the generated documentation

� syntax:

@since since-text

� indicates what was the current version of the class or package when this element was
created

cs3157-fall2002-sklar-lect18 22� �

� �

software documentation — tag descriptions: @link.

� inserts an in-line link with visible text label that points to the documentation for the
specified package, class or member name of a referenced class

� syntax:

{@link package.class#member label}

� similar to @see, but generates an in-line link instead of placing a reference in the “See
Also” section

� also —

� syntax:

{@linkplain package.class#member label}

� which is identical to {@link}, except the link’s label is displayed in plain text than
code font

cs3157-fall2002-sklar-lect18 23� �

� �

software documentation — tag descriptions: @value.
� displays the value of the constant when used in a static field comment

� syntax:

{@value}

cs3157-fall2002-sklar-lect18 24� �



� �

software documentation — tricks.

� sentences end with a period followed by a space

– screws up things like “Prof. Sklar”

– so do this: Prof.&nbsp;Sklar

� in Java, doc comments are inherited for:

– methods in a class that override its superclass’ (javadoc automatically adds
“overrides”)

– methods in an interface that override its superinterface (javadoc automatically adds
“overrides”)

– methods in a class that implement a method in an interface (javadoc automatically
adds “specified by”)

cs3157-fall2002-sklar-lect18 25� �

� �

software documentation — style guide.

� use <code> style for:

– Java keywords

– package names

– class names

– method names

– interface names

– field names

– argument names

– code examples

� omit parentheses for the general form of methods and constructors

– do this: The add method enables you to insert items

– not this: The add() method enables you to insert items

cs3157-fall2002-sklar-lect18 26� �

� �

software documentation — style guide (2).

� use a phrase for first “sentence” in description

� tag conventions

– order of tags

– ordering of multiple tags

– required tags (@param, @return)

� be consistent!!

cs3157-fall2002-sklar-lect18 27� �

� �

software documentation — the javadoc command.
� syntax:

javadoc <options> <packagenames> <sourcefiles> <@files>

� where:

– options = command-line options, including:

� -sourcepath

� -tags

� -overview

– packagenames = series of names of packages, separated by spaces

– sourcefiles = series of source file names, separated by spaces; can contain wildcard ()
to process all .java files

– @files = files containing packagenames and sourcefiles

� do man javadoc for more information

cs3157-fall2002-sklar-lect18 28� �



� �

user documentation.

� develop a plan of action

� decide on an approach

� design a useful format

� prepare first draft

� seek objective feedback

� revise as needed (edit!)

cs3157-fall2002-sklar-lect18 29� �

� �

user documentation — plan of action.

� analyze your audience

� four types of audiences

– lay (general public)

– executive (the boss)

– expert (peers)

– technician (maintainers)

� or real world — a mix of all four

cs3157-fall2002-sklar-lect18 30� �

� �

user documentation — interests of each audience.

� lay

– overview

– conclusions

– personal implications — use “you”

– use examples

� executive

– solutions

– budget, profits

– recommandations

– summary!

cs3157-fall2002-sklar-lect18 31� �

� �

user documentation — interests of each audience (2).
� experts

– data

– theories

– details

– process

� technicians

– how to fix it

– be practical

– they don’t like to read, they like to do

cs3157-fall2002-sklar-lect18 32� �



� �

user documentation — approaches.

� narrative

– report approach

– emphasizes results and conclusions

� analytical

– textbook

– emphasizes processes

� instructional

– directions

– emphasizes procedure

– takes reader’s role

cs3157-fall2002-sklar-lect18 33� �

� �

user documentation — formats.

� reports are not read, they are used

� need a high level of structure!

� general report format

– front matter

– internal matter

– concluding matter

cs3157-fall2002-sklar-lect18 34� �

� �

user documentation — front matter.

� letter of transmittal, preface, acknowledgements

� cover

� title page

� summary and/or abstract

� table of contents: headings, subheadings

� lists of tables and illustrations

cs3157-fall2002-sklar-lect18 35� �

� �

user documentation — internal matter.
� introduction

– write this last!

– background

– purpose

– scope

– be organized and brief

� body of report

– remember audience analysis

– conclusions

� objective findings

� results based on logical chain of reasoning

– recommendations

� subjective findings

� opinions

cs3157-fall2002-sklar-lect18 36� �



� �

user documentation — concluding matter.

� appendices

� glossary

� index

� bibliography

cs3157-fall2002-sklar-lect18 37� �

� �

user documentation — summary/abstract.

� very important!

� (executive) summary

– condensed version of longer document

– should reflect style and organization of document

– 5-10/

� abstract

– brief description of document

– very tight

– conveys main idea

– includes keywords

– 75-200 words

cs3157-fall2002-sklar-lect18 38� �

� �

user documentation — summary/abstract (2).

� present only critical information

� include controlling ideas (what is the thesis?)

� include major findings

� omit details

� should be self-contained

� exercise: take all topic sentences from each paragraph in the report and put them into an
abstract/summary

cs3157-fall2002-sklar-lect18 39� �

� �

user documentation — editing.
� revising

� systematic editing — do a limited number of things at a time

� distinguish between

– content (ideas)

– language

� condense

� consolidate

� simplify

cs3157-fall2002-sklar-lect18 40� �



� �

user documentation — writing style.

� active versus passive voice

– active voice (“Simon played the game.”)

� more direct

� natural speaking pattern

� takes responsibility (“Our algorithm solved the problem.”)

– passive voice (“The game was played by Simon.”)

� can feel backwards

� tends to lead to longer sentences

� don’t use it too much

� appears to remove blame (“The problem was not solved by our algorithm.”)

cs3157-fall2002-sklar-lect18 41� �

� �

user documentation — writing style (2).

� use vigorous, descriptive verbs

� keep parallel thoughts parallel

– use same structure in same situation

– e.g., always start list elements with “-ing” words

� use periodic structure for emphasis and organization

– i.e., “In the first step,... In the second step,...”

� structure useful paragraphs

– like a sandwich

� writing should flow!

cs3157-fall2002-sklar-lect18 42� �

� �

user documentation — rhetorical devices.

� use examples

� use definitions

� use comparisons

� use classifications and divisions

� use causal analysis

– deduction (general � specific)

– induction (specific � general)

cs3157-fall2002-sklar-lect18 43� �

� �

user documentation — descriptions.
� identify with the reader

� only present relevant details

� describe overall object first

� then describe components in detail

� use rhetorical devices

� use graphics

� keep in mind reader’s questions:

– what is it?

– what does it do?

– what does it look like?

– what is it made of?

– how does it work?

cs3157-fall2002-sklar-lect18 44� �



� �

user documentation — controlling jargon.

� two kinds of jargon

– specialized terms and abbreviations

– hidden jargon — giving common words a special twist

� easily abused

– confuses and intimidates

– can confer spurious legitimacy

cs3157-fall2002-sklar-lect18 45� �

� �

user documentation — graphics: tables.

� typeset

� stay with text

� (typically) show exact quantities

� two types:

– general, reference

– summary

cs3157-fall2002-sklar-lect18 46� �

� �

user documentation — graphics: illustrations.

� artwork

� divorced from text

� (typically) show approximate quantities

� demonstrate trends

� includes

– graphs (e.g., line graphs, bar charts, ...)

– diagrams (e.g., flowcharts, UML)

– cartoons (artist’s rendition)

– maps

– photographs

cs3157-fall2002-sklar-lect18 47� �

� �

user documentation — graphics: design guidelines.
� reader’s aid

� intelligent, efficient display of data

� limited symbols

� accurate

� honest scaling

� relatively self-contained

� numbered

� descriptive title (who? what? when? etc.)

� reference in text

� placement as close to first mention in text as possible

cs3157-fall2002-sklar-lect18 48� �



� �

user documentation — graphics: accompanying text.

� explain significance of data

� interpret the data

� why is it interesting?

� explain outliers, anomalies

cs3157-fall2002-sklar-lect18 49� �

� �

user documentation — good references.

� good dictionary (Random House, Oxford, etc)

� Roget’s Thesaurus

� Strunk and White: “Elements of Style”

� Chicago Manual of Style

� “Elements of Programming Style”

� Brusaw, Alred and Oliu: “Handbook of Technical Writing”

cs3157-fall2002-sklar-lect18 50� �


