
1

Advanced
Programming
Software Engineering
Lecture 2
Phil Gross
23 Oct 2002

Remotivating

� CS teaches how to write ideal software
� In the real world, software is usually late,

overbudget, and broken
� Software lasts much longer than either

hardware or employees
� The real world is a harsh environment, and

software is fundamentally brittle

Case Study: Ariane 501

� Next-generation launch vehicle
� Successor to the Ariane 4
� Prestige project for ESA
� Maiden flight: June 4th 1996

A Part of the System

� Inertial Reference System
�

What’s my position, velocity, and
acceleration?

� Critical, obviously
� Dual redundant

� Calibrated on launch pad
� Largely carried over from Ariane 4

� recalibration routine allowed to continue
running for 40 sec after launch

The Problems

� Recal routine never used after launch, but
still active

� One step in recal converted floating point
value of horizontal velocity to integer

� Ada automatically throws an exception if
data conversion is out of bounds

� If exception not handled, IRS returned
diagnostic data instead of position/velocity
info

The Situation

� Perfect launch
� Starts flying much faster than Ariane 4
� Horizontal component goes out of bounds

for integer conversion
� Both IRSs switch to diagnostic mode
� Control system interprets diagnostic data

as very weird orientation
� And attempts to correct it…

2

Ariane 501 Go Boom

� 150+ feet high
� 25 tons of hydrogen
� 130 tons of liquid oxygen
� Over 500 tons of solid propellant
� Failure at altitude of 2.5 miles
� Ten years and $7,000,000,000

Postmortem

� Recal routine had no business being
active after launch

� Horizontal velocity parameter conversion
was deliberately allowed to be unchecked

� Q: Who’s to blame?
� A: No one, of course. “Mistakes were made”

At Least It Was Pretty Reuse Specification Error

� Horizontal bias needed to fit into 16 bits
� Documented somewhere
� Not in the code
� Software had never been tested with

actual flight parameters
� Problem easily reproduced in test

environment after the fact

Things to Think About Early

� Reuse
� Portability
� Interoperability
� Scalability
� Your future self will thank you

Impediments to Reuse

� Lack of trust / NIH
� Logistics of reuse
� Loss of knowledge base
� Mismatch of features (Kangaroos)

3

Basic Reuse: Libraries

� Library
� API
� System Call

Successful Reuse: Objects

� Well, that was the intention in any case
� Typical language-level objects need some

help
� Discovered somewhat by accident: VBX
� Lead to JavaBeans and the COM family
� Windows uses this pretty successfully

Reuse: Frameworks

� High-level
� Framework gives you a generic body into

which you add your particular code
� Example: MFC
� Problems: bloat, steep learning curve

Reuse: Design Patterns

� Christopher Alexander in 1977
� Gang of Four in 1995
� Ways of organizing objects in order to

solve frequently reoccurring problems
� Design it to be flexible, extensible,

scalable, portable, etc. from the beginning
� Give a vocabulary
� Antipatterns: known bad ways of doing

things

Portability Pitfalls

� Hardware
� OS
� Numerics
� Compilers
� Libraries
� But, you have to do it: software lasts

longer than hardware

Language Portability

� Java and C#
� Java uses a JVM

� Write once, run anywhere, sorta, kinda
� C#: also uses a JVM

� But emphasizes mobile data, not code
� XML everywhere

� Winner = ?
� but betting against Microsoft is historically a

losing proposition

4

Interoperability

� COM, CORBA, EJB, Web Services
� define abstract services
� Allow programs in any language to access

services in any language in any location
� Object-ish

Scalability

� Just keep it in mind
� Familiarity with patterns can help

� Don’t worry about scaling beyond abilities
of machine

�
Avoid unnecessary barriers

�
Plus maybe graceful overload handling

� From single connection, to forking
processes, to threads, to thread pool

UML

� History
� Use case diagrams
� Class diagrams
� Sequence diagrams
� State diagrams

UML History

� Need to draw pictures
�

Every guru has his own style
� “The three amigos”

� Grady Booch, James Rumbaugh, Ivar
Jacobson

� “The three egos”
� Rational

� The Microsoft of Software Engineering

Use Case Diagrams

� Neither Janak nor I like these much
� The idea is necessary

� Classic SoftE disaster: system is built and
runs perfectly. Unfortunately, it’s the wrong
system.

� Idiotic little stick-figure diagrams are not

Typical Use Case

� Subway Routing
�

Touch here
�

User touches
�

Map and “touch destination”
�

User touches times square
�

Highlight times square
�

Route is calculated
�

Route shown with transfer highlighted
�

Wait 30 sec
�

Ask if should stay up
�

Otherwise reset

5

Class Diagram

� The “guts”of UML
� Show static class relationships

� Generalization = inheritance
� Classes, Attributes, and Operations

� Dramatis Personae for your program

Relationships

� Association = “has a”
� Have multiplicities

� And, by extension, mandatory/optional
� Can also have role name
� Navigability
� Constraints/contracts
� Composition

Sequence Diagrams

� Show lifetime of objects
� And their interaction
� “lifelines” arranged vertically
� Same info as collaboration diagram

� Has sequence annotations on 2D diagram

State Diagrams

� States, transitions between them
� Long running actions happen within states
� Fast, uninterruptable actions transition

between states
� Transition labels: Event [Guard] / Action

Other UML Diagrams

� Component/Deployment
� What pieces are running where

� Activity Diagram
�

Fancy flow chart
� Non-UML

� Architecture diagrams
�

Components and connectors

6

What’s Missing

� State Diagrams
� Timing information
�

Event [Guard] / Action {timing constraint}
� Multicast communication

�
Not captured well by lines

�
Interesting problem

One Tip: Spider Diagrams

� Three possibilities
� Lousy design

� Bottleneck, single point of failure
� Drawing communication system as component

� Strictly accurate, but not useful
� What you intended

� Simple, effective design

