N

Welcome to ¢s3101-003 Java!

Programming Languages: Java

Spring 2003

Wed 11.00am - 1.00pm CS486 (CLIC lab)

Professor Elizabeth Sklar

email: sklar@cs.columbia.edu
web: http://www.cs.columbia.edu/"sklar
office: 460 Computer Science building (through Mudd)

office hours: posted weekly on my web page

Class web page:
http://www.cs.columbia.edu/sklar/cs3101

€s3101-003-java-spring2003-sklar-lect01

course overview.

e Objective
— become fluent in Java
e resources

— lectures

— lecture notes

— class web page
— books

— web

— TAS

- me

e requirements

— you must get a CS account for this class
— go to http://www.cs.columbia.edu/accounts

€s3101-003-java-spring2003-sklar-lect01

N

N

assessment.

e 5 homeworks, 15 points each
e 5 in-class exercises/quizzes, 5 points each
e N0 exams

e class participation counts!

€s3101-003-java-spring2003-sklar-lect01

a word about homeworks.

¢ should be done on your own, as much as possible

e get help from TAs, me, friends
but you must acknowledge all help received by citing the names of those who helped you
in the comments of your code

e this not only protects you from being accused of cheating, but also protects you in case
your helper gives you misinformation

e this also lets me know who is really helpful, which is useful in selecting TAs for next
semester

€s3101-003-java-spring2003-sklar-lect01

homeworks: submission policy.

e homeworks are due on the day that they are due
e here are the rules — please know them well:

— all homeworks MUST be submitted electronically by 6AM on the due date
— submission time is clocked according to the time of your electronic submission

— be aware that the system tends to get clogged when too many people try to submit at
the same time — so AVOID A LATE PENALTY and don’t submit too close to the
6AM deadline!

— you may have a total of 25 hours grace time for lateness of electronic copies, which
may be used up all at once or split between several assignments

e exceptions and extensions are possible, primarily based on MEDICAL EMERGENCIES
— circumstances must be documented and suitable arrangements will be made — you
must consult me via email on an individual basis

€s3101-003-java-spring2003-sklar-lect01 5

homeworks: regrade policy.

e if you feel that there was an error in grading your homework, then you need to write on a
piece of paper a description of the error and give it to me

e know that the TAs are given a list of expectations for each homework assignment and
quiz and told where to take off points — so if your complaint is that too many points
were taken off for one kind of mistake or another in your program, then generally those
types of things will not change in a regrade

e if there is a genuine error in the marking, like we thought something was missing, but it
is really there, then you will likely get points restored

e HOWEVER, a regrade means that the entire assignment or quiz will be remarked, so be
aware that your mark can go DOWN as well as UP

e regrades take a while to process, so be patient — if you need the work to study from,
then make a copy of it before you turn it in for a regrade

€s3101-003-java-spring2003-sklar-lect01 6

N

o l,.'_-}":.u- -

homeworks: a word to the wise.

e save early and save often!

e disk drives crash

e floppies have bad sectors

e power supplies fail
e monitors die

e Mice get trapped

e paper print-outs are the best security known to mankind

€s3101-003-java-spring2003-sklar-lect01

N

a word about lectures.

e brief notes for every lecture will be placed on the syllabus section of the class web page
e but they are NOT A SUBSTITUTE FOR COMING TO CLASS

e if you must miss a class, YOU are responsible for getting notes from someone who did
come to class

e | will try to post lecture notes on the web before class

e | strongly encourage you to take notes yourself because you learn better when you
actually write things down

e everything | say is NOT in the lecture notes

e sometimes there are mistakes in the lecture notes which get caught and corrected during
class; | will post updated lecture notes if this happens

€s3101-003-java-spring2003-sklar-lect01

a word about academic integrity.

=
b~

———

| o
£ N
.- -
Ny
I
-

e the work you submit for assessment should be completed ON YOUR OWN
e you may get help from TAs, me, friends

e you must acknowledge all help given

¢ you should not mail code or copy files

e if someone asks you to do this, JUST SAY NO!

€s3101-003-java-spring2003-sklar-lect01

N

N

topics covered.

1. Java applications; output; data storage and representation; operators; command-line
Input; branching with i f

2. branching with swi t ch; looping; native classes and methods; classes and objects;
inheritance

writing your own classes; Java keywords
arrays; 1/0; exceptions

applets; graphics; graphical user interfaces; event handling

A e

recursion; data structures; threads

€s3101-003-java-spring2003-sklar-lect01 10

N

how to learn a programming language.

e YOU are responsible for your own learning!!!

¢ | will point you in the right direction...

e but YOU must PRACTICE, PRACTICE, PRACTICE...
e and PRACTICE some more!!!

e if you don’t understand, then ASK for help!

€s3101-003-java-spring2003-sklar-lect01

11

N

which environment?

e there are lots of Java compilers and programming environments
e in class, we’ll use Unix and emacs at first

e later we’ll look at some free development environments

€s3101-003-java-spring2003-sklar-lect01

12

N

Java.

e Java is an object-oriented language: it is structured around objects and methods, where a

method is an action or something you do with the object
e Java programs are divided into entities called classes

e some Java classes are native
but you can also write classes yourself

e Java programs can run as applications or applets

€s3101-003-java-spring2003-sklar-lect01

13

N

“hello world”

our first application.

e typical first program in any language

e output only (no input)

€s3101-003-java-spring2003-sklar-lect01

14

the application source code.

file name = hello.java

El Skl ar, 22-Jan-03, hello.java
This class denponstrates output froma Java application.

public class hello {
public static void main (String[] args) {
Systemout.println("hello world!\n");
} /1l end of main()
} /'l end of class hello()

€s3101-003-java-spring2003-sklar-lect01 15

output.

e methods
Systemout.printin()
Systemout.print()

e arguments

— those things inside the parenthesis ()

— one or more Strings, separated by “+”’s
— escape sequences: \n, \t

— also called parameters

e example
Systemout.println("The quick" +

€s3101-003-java-spring2003-sklar-lect01

br own

+

fox");

16

N

things to notice.

e Java is CASE sensitive

e punctuation is really important!

e Whitespace doesn’t matter for compilation

e BUT whitespace DOES matter for readability and your grade!

e file name is same as class name

€s3101-003-java-spring2003-sklar-lect01

17

N

data types and storage.

e programs = objects + methods
e Objects = data
e data must be stored

e all storage is numeric (0’s and 1’s)

€s3101-003-java-spring2003-sklar-lect01

18

memory.

e think of the computer’s memory as a bunch of boxes
e inside each box, there is a number

e you give each box a name
= defining a variable

e example:
program code: computer’s memory:
int Xx; X =

€s3101-003-java-spring2003-sklar-lect01

19

N

variables.

e variables have:

— name

— type
— value

e naming rules:

— names may contain letters and/or numbers

— but cannot begin with a number

— names may also contain underscore () and dollar sign ($)

— underscore is used frequently; dollar sign is not too common in Java
— can be of any length

— cannot use Java keywords

— Java is case-sensitive!!

€s3101-003-java-spring2003-sklar-lect01

20

primitive data types.

e NumMeric
byte 8 bits | -128 = -27 127=2"-1
short |16 bits | -32,768 = -2 32,767 =-21-1
int 32 bits | -23! 231 .1
long | 64 bits | -20 203 -1
float |32 bits |~ -3.4E+38, 7sigdig |~ 3.4E+38, 7 sig dig
double | 64 bits | ~ -1.7E+308, 15 sig dig | ~ 1.7E+308, 15 sig dig
e boolean
boolean | 1 bit
e Character
char | 16 bits

€s3101-003-java-spring2003-sklar-lect01

21

N

e = is the assignment operator
e example:
program code:

Int x; // declaration
x = 19; [/ assignnent

or
int x = 19;

€s3101-003-java-spring2003-sklar-lect01

assignment.

computer’s memory:
X — 119

22

N

Strings.

e a St ring inJavais a special data type — it’s called a wrapper class (which we’ll talk
about in detail later)

e a String isessentially a group of chars

e it comes with a method called | engt h() that lets you find out how many characters are
in the string (i.e., how long it is)

e It comes with a number of other methods, which we’ll talk about later

e a char has single quotes around it
char ¢ = "A;

e a St ri ng has double quotes around it
String s = "hello world!";

e in this case, the method s. | engt h() returns 12

€s3101-003-java-spring2003-sklar-lect01 23

N

+ | unary plus
— | unary minus
+ addition

— | subtraction
« | multiplication
/ division

% modulo

mathematical operators.

example:

int X, V;
X = -95;

y = x * 7,
y =y + 3
X =X * -2;
y = x [19;

what are X and y equal to?

modulo means “remainder after integer division”

€s3101-003-java-spring2003-sklar-lect01

24

N

coercion or type casting.

e remember from last time: data of type char is stored as a number — which is really an
index into the ASCII table

e a declaration like this:

char y = "A';

really stores a 65 (the ASCII value of A’) in a memory location that is labeled y

e you can do math on that 65 by coercing (aka type casting) the char toani nt

e for example:

char vy = "A;
int x = (int)y;
X = x + 1

y = (char)x;

€s3101-003-java-spring2003-sklar-lect01

/]
/1
/]
/1

initialize variable y to store an A
initialize variable x to store 65

I ncrenent x (to 66)

coerce x froman int to a char ('B)

25

Increment and decrement operators.

e INncrement: +-+
| ++;
IS the same as:
I =1 + 1;

e decrement: ——
I --;
is the same as:
=1 - 1;

€s3101-003-java-spring2003-sklar-lect01

26

N

| += 3:; 1sthe same as: i

| -= 3: Isthe same as: i

| *= 3: Isthe same as: i

| /= 3; 1sthe same as: i

| % 3:; I1sthe same as: i

€s3101-003-java-spring2003-sklar-lect01

assignment operators.

=1 %3;

27

N

boolean expressions.

e boolean variables: t rue (1) or f al se (0)

e logical operators:

| not
&& | and example:
| | or
X = 1;
y = 0;

System out . printl n(
Systemout.printin("x ||

bool ean a, b;

[l true
[l false

"X && y is false");

y is true");

Systemout.printin("x & !y is true");

€s3101-003-java-spring2003-sklar-lect01

28

N

truth tables.

a b |[a&&Db

false | true
true | false

€s3101-003-java-spring2003-sklar-lect01

true | true | true
true | false | false
false | true | false
false | false | false

al|lb

true
true
false
false

true
false
true
false

true
true
true
false

N

relational operators.

example:

== equality Int X, VY;

1= inequality X = -5;

> greater than y =7,

< less than

>= | greater than or equal to SO(meXtrtihs:

<= Less than or equal to y) |true
(x ==y) |false
(x >=vy) |false

€s3101-003-java-spring2003-sklar-lect01

30

N

i (x<y){
X = y;
}

€s3101-003-java-spring2003-sklar-lect01

the 1 f branching statement.

I (x<y){
X =Y;

}

el se {
X = 91;

}

31

the i f branching statement (1).

there are four forms:

(1) simple if

if (x <0) {
Systemout.println("x is negative\n");
} Il end if x <O

(2) if/else

if (x <0) {
Systemout.println("x is negative\n");
} /[l endif x <0
el se {
Systemout.printin("x is not negative\n");
} I/ end else x >= 0

€s3101-003-java-spring2003-sklar-lect01

32

(3) iffelse if

if (x <0) {
System out. pri
} I/l end if x <

the 1 f branching statement (2).

ntln("x is negative\n");
0

elseif ((x >0) {

System out. pri
} I/l end if x >
el se {

System out. pri
} I/ end else x

€s3101-003-java-spring2003-sklar-lect01

ntin("x is positive\n");
0

ntin("x is zero\n");

33

the 1 f branching statement (3).

(4) nested if
you can nest any kind/number of if’s

if ((x <0) {
Systemout.println("x is negative\n");
} /[l endif x <0
el se {
if (x >0) {
Systemout.printin("x is positive\n");
} /] endif x >0
el se {
Systemout.printin("x is zero\n");
} /] end else x ==
} I/ end else x >= 0

€s3101-003-java-spring2003-sklar-lect01

N

flowcharts

e diagram for illustrating control flow of a program
e conventions:

— rectangle = statement or method call
— diamond = yes/no or true/false question

€s3101-003-java-spring2003-sklar-lect01

35

command line arguments (1).

e remember our model of a computer program from the 2nd lecture:
input — |CPU| — output

e homework #1 was an output only program
e now we will learn how to get input into your program
e there are many ways to do this...

e we will start with command line arguments, which are a way of getting input into your
program from the UNIX environment when you start up your program

e UNIX commands use arguments (arguments are also called parameters)

e for example, with the command:
uni x$ |I's -1

the | s part is the command; and

the - | part is an argument (in this case, - | is a special type of argument, also called a
“switch” in UNLX; it is an argument that starts with a - , and usually is used to indicate
switching on or off some feature of the command being run)

€s3101-003-java-spring2003-sklar-lect01 36

N

command line arguments (2).

e the “hello world” program takes no arguments and is started up like this:
uni x$ java hello
e here’s the source code:

public class hello {
public static void main (String[] args) {
Systemout.println("hello world!'\n");
} /] end of main()
} /'l end of class hello()

€s3101-003-java-spring2003-sklar-lect01

37

N

command line arguments (3).

e the “hello2” program that takes one argument and is started up like this:
uni x$ java hell o2 ringo
e here’s the source code:

public class hello2 {
public static void main (String[] args) {
Systemout.printin("hello "+args[0]);
} /] end of main()
} /] end of class hello2()

e in this example, the argumentisri ngo

e and the output of the program would be:

uni x$ java hell o2 ringo
hell o ringo!

uni x$

€s3101-003-java-spring2003-sklar-lect01

38

N

command line arguments (4).

e the argument ar gs to the mai n() method is of type St ri ng[]

e Which means it is a list of strings (i.e., Java class St r i nQ)

e Where a string is a list of characters (i.e., Java primitive data type char)
e St ri ng is something called a wrapper class

e we’ll talk more about wrapper classes later

e a St ri ng value is defined using double quotes, e.g.,
String x="ABC';
or
String y="A";

e a char value is defined using single quotes, e.g.,
char z="A;

€s3101-003-java-spring2003-sklar-lect01

39

N

command line arguments (5).

e When a java program is invoked from the UNIX command line, any values after the
program name are passed into the program, for use when the program is running.

e the ar gs argument to mai n gives you access to these values, for free (i.e., you don’t
have to do anything special to get them), through the line of code that looks like this:
public static void nmain(String[] args)

e yOU can see how many arguments were passed into the program by using the value of
args.length

e you can see what the values of the arguments are by looking them up in the ar gs list,
using an index, i.e., a number which indicates which entry in the list you are referring to

e remember that in computer science, we start counting with 0

e S0 the first value in the argument list is referenced as ar gs[O] , and so on

€s3101-003-java-spring2003-sklar-lect01 40

N

command line arguments (6).

e given the command line:
uni x$ java ex60 A 12 DOG
then
ar gs. | engt h would be equal to 3, and
ar gs would look like this:

arg[0] "A"
arg[1] "12"
arg[2] " DOG'

e these are all St ri ngs!!

e if you want to use a command line argument as a number, then you have to convert it,
just like we converted, or coerced, i nt to char and so forth

e for today, only worry about the syntax:

togo from |to use the following
String s|float f |f = (Float.valueO(s)).floatVal ue();
String s|int i I = (Integer.valueO (s)).intValue();

€s3101-003-java-spring2003-sklar-lect01

41

N

Systemexit() (1)

e a method inclassj ava. | ang. Syst em

e definition:
public static void exit(int status);

e terminates the currently running Java Virtual Machine

e the argument serves as a status code — by convention, a nonzero status code indicates
abnormal termination

e use at the end of a program to exit cleanly or to terminate in the middle

€s3101-003-java-spring2003-sklar-lect01 42

Systemexit() (2

| nport java.lang.*;
public class ex_exit {

public static void main (String[] args) {
I f (args.length < 3) {
Systemout.println("usage: java ex_exit <a> <c>");
Systemexit(1); // abnornmal term nation
}
/[l ... rest of program goes here ...
Systemexit(O); // normal term nation
} /'l end of main()

} I/ end of class ex _exit

€s3101-003-java-spring2003-sklar-lect01 43

N

to do.

e get a CS account (if you don’t already have one)
e ... and try logging in

e check out the class web page:
http://www.cs.columbia.edu/"sklar/cs3101

e homework #1 will be posted by midnight and will be due next week

€s3101-003-java-spring2003-sklar-lect01

N

try it yourself.

1. log into your CS account

2. create the application source code file “hello.java”,
using the emacs editor type in the code (above)

3. compile the source code,
using the javac command

4. execute the program using the java command

5. modify the example, trying different forms of output

€s3101-003-java-spring2003-sklar-lect01

45

files in UNIX.

e hierarchical file system

e example:
/ home/ skl ar/
|
+- - m - - - - F-m - - S LTI —— +
| | |
cl asses/ mai | / public _htm/
| | |
oo - - - - oo - - - - + Si nmon | ndex. ht m
| | suzanne
cs1007/ cs1003/ j en
| | al ex
hel |l 0.] ava hell o.c

hel | 0. cl ass

€s3101-003-java-spring2003-sklar-lect01

46

N

quick and dirty UNIX.

e commands have options or parameters or switches

e switches start with
e Some commands...

— Mman

— chmod

€s3101-003-java-spring2003-sklar-lect01

man — get help (display manual page).

man — display manual pages (get help!)

man man — display manual page for the man command
man Is — display manual page for the Is command

man -k file — list all commands with the keyword file

uni x> man pwd

PWD(1) FSF PWD(1)

NANVE
pwd - print nanme of current/working directory

SYNOPSI S
pwd [OPTI ON|
DESCRI PTI ON

Print the full filenanme of the current working directory.

€s3101-003-java-spring2003-sklar-lect01 48

N

pwd — print working directory.

uni x> pwd
/ honme/ skl ar/teachi ng/ cs1007/sl i des

€s3101-003-java-spring2003-sklar-lect01

49

N

cd — change working directory.

uni x> pwd

[home/ skl ar/

uni x> cd cl asses
uni x> pwd

[home/ skl ar/ cl asses

€s3101-003-java-spring2003-sklar-lect01

50

|s— list the files in the current directory

Is -aF — list all files and show their file types

uni x> | s -aF

A
A
. cshrc
cl asses/
mai | /
hel |l 0.] ava
Is -1 — list files in long format
uni x> I's -1 hello.]ava
“rWr--1-- 1 sklar faculty 187 Sep 5 10:45 hello.java

€s3101-003-java-spring2003-sklar-lect01

51

mkdir — make (create) a directory

uni x> | s -aF
A
.y
.cshrc
cl asses/
mai | /
hel |l 0.] ava
uni x> nkdir junk
uni x> | s -aF
A

A

.cshrc
cl asses/
j unk/
mai | /
hel |l 0.] ava

€s3101-003-java-spring2003-sklar-lect01

52

rmdir — remove (delete) a directory.

uni x> | s -aF
A

.y

.cshrc

cl asses/

j unk/

mai | /

hel |l 0.] ava
uni x> rndir junk
uni x> | s -aF
A

o

.cshrc

cl asses/
mai | /

hel |l 0.] ava

€s3101-003-java-spring2003-sklar-lect01

53

cp — copy a file.

uni x> I's -aF
A

A

.cshrc
cl asses/
mai | /
hell 0.] ava
uni x> cp hello.java hi.java
uni x> | s -aF
A

A

.cshrc
cl asses/
mai | /
hel |l 0.] ava
hi.java

€s3101-003-java-spring2003-sklar-lect01

mv — move (rename) a file.

uni x> I's -aF
A

A

.cshrc
cl asses/
mai | /
hell 0.] ava
uni x> mv hell o.java howdy. | ava
uni x> | s -aF
A

A

.cshrc
cl asses/
mai | /
howdy. | ava

€s3101-003-java-spring2003-sklar-lect01

55

uni x> | s -aF
A

A

.cshrc
cl asses/
mai | /
hi.java
howdy. | ava
uni x> rm hi.java
uni x> | s -aF
A

A

.cshrc
cl asses/
mai | /
howdy. | ava

€s3101-003-java-spring2003-sklar-lect01

rm — remove (delete) a file.

56

chmod — change file mode

e 9 characters: - uuugggooo

e WHO: u = user, g = group, o = other users, a = all users (u + g + 0)

e WHAT: r = read, w = write, X = execute

e MODE: + = allow, - = don’t allow

uni x> 1ls -1 hi.java

- F WXT - XTI - X 1 sklar faculty
uni x> chnod a+w hi.java

uni x> 1ls -1 hi.java

- T WXT WX T WX 1 sklar faculty

€s3101-003-java-spring2003-sklar-lect01

187 Sep 5 10:45 hi.java

187 Sep 5 10:45 hi.java

57

quick and dirty emacs.

uni x> ej ava hell o.java

or

uni x> enmacs -nw hell o.j ava
Ctrl-B move cursor Back
Ctrl-F move cursor Forward
Ctrl-P move cursor to Previous line
Ctrl-N move cursor to Next line
Ctrl-D Delete character under cursor
Ctrl-K Kill (delete) to end of line
Ctrl-Y Yank back (undelete) killed text
Ctrl-X Ctrl-S | Save the file

Ctrl-X Ctrl-C | eXit emacs

Ctrl-H Help

Ctrl-G Gets you out of trouble!

€s3101-003-java-spring2003-sklar-lect01

N

