
� �

cs3101-003 Java: lecture #3

� news:

– homework #2 due today

– homework #3 out today

� today’s topics:

– classes and objects

– formatting output

– writing your own classes

– making sense of keywords

� this

� super

� final

� public

� private

� static

cs3101-003-java-spring2003-sklar-lect03 1� �

� �

classes.

� classes are the block around which Java is organized

� classes are composed of

– data elements:

� variables — i.e., their values can change during the execution of a program

� constants — i.e., their values CANNOT change during the execution of a program

� like variables, they have a type, a name and a value

– methods

� modules that perform actions on the data elements

� like variables, they have a type, a name and a value

� unlike variables, the type can be void, which means that they don’t really have a
value

� constructors — special types of methods used to set up an object before it is used
for the first time

� groups of related classes are organized into packages

cs3101-003-java-spring2003-sklar-lect03 2� �

� �

classes: define objects.

� are “blueprints” for creating instances of objects

� example: a house

– class = architect’s blueprint

– instance = a house built following that blueprint

� instantiate = to build the house

� you can build MANY houses using the same blueprint, so you can instantiate many
objects using the same class

cs3101-003-java-spring2003-sklar-lect03 3� �

� �

classes: contain members.
� data declarations (e.g., the people and the stuff inside the house)

– constants

– variables

� methods (e.g., the things people do with the stuff)

– actions that are performed on the object and/or with its data

– a constructor is a special method used to instantiate an object of that class

– some methods may change the values of the variables

– some methods may return the values of the variables

� scope (e.g., where can people do things with the stuff?)

– local vs global

– instance data

– method data

cs3101-003-java-spring2003-sklar-lect03 4� �

� �

classes: instantiating objects.

� in order to use a class, you instantiate it by creating an object of that type

� this is kind of like declaring a variable

import java.util.*;
public class ex3a {
public static void main(String[] args) {

Date now = new Date();
Random rnd = new Random(now.getTime());
System.out.println("here are ten positive integers:");
for (int i=0; i<10; i++) {
System.out.println(Math.abs(rnd.nextInt()));

} // end of main()
} // end of class ex3a

cs3101-003-java-spring2003-sklar-lect03 5� �

� �

writing your own classes (1).

� you can create your own classes in two ways:

– by writing a completely new class

– by extending an existing class

cs3101-003-java-spring2003-sklar-lect03 6� �

� �

writing your own classes (2).

� when you write your own class, you can define

– “global” data elements

� variables

� constants

– methods

– constructor

cs3101-003-java-spring2003-sklar-lect03 7� �

� �

variables.
� have a name, type and value

� value is initialized, to 0 for numbers (unlike C)

� have “global” scope if they are declared outside of any method

cs3101-003-java-spring2003-sklar-lect03 8� �

� �

constants.

� their values CANNOT change during the execution of a program

� i.e., their values remain constant

� like variables, they have a type, a name and a value

� the keyword final indicates that the variable is a constant and its value will not change
during the execution of the program

� example:

public class java.lang.Math {
static final double PI=3.1415927...;
.
.
.

} // end of Math class

cs3101-003-java-spring2003-sklar-lect03 9� �

� �

method declaration.

� like a variable, has:

– data type:

� primitive data type, or

� class

– name (i.e., identifier)

� also has:

– arguments (optional)

� also called parameters

� formal parameters are in the blueprint, i.e., the method declaration

� actual parameters are in the object, i.e., the run time instance of the class

– throws clause (optional)
(we’ll defer discussion of this until later in the term)

– body

– return value (optional)

cs3101-003-java-spring2003-sklar-lect03 10� �

� �

method use.

� program control jumps inside the body of the method when the method is called (or
invoked)

� arguments are treated like local variables and are initialized to the values of the calling
arguments

� method body (i.e., statements) are executed

� method returns to calling location

� if method is not of type void, then it also returns a value

– return type must be the same as the method’s type

– calling sequence (typically) sets method’s return value to a (local) variable; or uses
the method’s return value in some way (e.g., a print statement)

cs3101-003-java-spring2003-sklar-lect03 11� �

� �

constructor.
� a constructor is a special method that is invoked when an object is instantiated

� a constructor can have arguments, like any other method

� a constructor does not return a value

� a constructor’s name is the same as the name of the class to which it belongs

� a constructor is invoked by using the new keyword

� example:

Date now = new Date();
Random r1 = new Random();
Random r2 = new Random(now.getTime());

cs3101-003-java-spring2003-sklar-lect03 12� �

� �

encapsulation and visibility.

� objects should be self-contained and self-governing

� only methods that are part of an object should be able to change that object’s data

� some data elements should not even be seen (or visible) outside the object

� public data elements can be seen (i.e., read) and modified (i.e., written) from outside the
object

� private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from
inside the object

� typically, variables are private and methods that provide access to them (both read and
write) are public

� typically, constants are public

� example: house

– walls provide privacy for the inside

– windows provide public viewing of some of the inside

cs3101-003-java-spring2003-sklar-lect03 13� �

� �

example.

public class Coin {

// declare constants
public static final int HEADS = 0;
public static final int TAILS = 1;

// declare variables
private int face;
private int value;

// constructor
public Coin(int value) {
this.value = value;
flip();

} // end of Coin()

cs3101-003-java-spring2003-sklar-lect03 14� �

� �

// flip the coin by randomly choosing a value for the face
public void flip() {
face = (int)(Math.random()*2);

} // end of flip()

// return the face value
public int getFace() {
return face;

} // end of getFace()

// return the coin’s value
public int getValue() {
return value;

} // end of getValue()

cs3101-003-java-spring2003-sklar-lect03 15� �

� �

// return the coin’s face value as a String
public String toString() {
String faceName;
if (face == HEADS) {
faceName = "heads";

}
else {
faceName = "tails";

}
return faceName;

} // end of toString()

} // end of class Coin

cs3101-003-java-spring2003-sklar-lect03 16� �

� �

static modifier (1).

� when we instantiate an object in order to use it, we are creating an instance variable
e.g., Random r = new Random();

� some members in some classes are static which means that they don’t have to be
instantiated to be used

� for example, all the methods in the java.lang.Math class are static

– you don’t need to create an object reference variable whose type is Math in order to
use the methods in the Math class

– e.g., Math.abs(), Math.random()

� you use the name of the class preceding the dot operator, instead of the name of the
instance variable, in order to access the static members of the class

� e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type
Random that we created above)

� that is why we can use main() without instantiating anything
i.e., public static void main()

cs3101-003-java-spring2003-sklar-lect03 17� �

� �

static modifier (2).

� constants, variables and methods can all be static

� except constructors
(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

� typically, constants are static

� example:

public class Coin {
public static final int HEADS=0;
public static final int TAILS=1;
.
.
.

} // end of Coin class

� we can now access Coin.HEADS and Coin.TAILS without instantiating and/or
without referring to a specific instance variable

cs3101-003-java-spring2003-sklar-lect03 18� �

� �

inheritance.

� inheritance is the means by which classes are created out of other classes

� it is a cornerstone of object-oriented programming

� the idea is to create classes that can be re-used from one application to another

� classes contain data objects and methods

� you want to be able to change the data type of the data objects and still be able to use the
same methods

� you also want to be able to change the flavor of what the methods do

cs3101-003-java-spring2003-sklar-lect03 19� �

� �

inheritance tree (1).
� think of the most primitive Java class, Object as being at the root of the inheritance tree

� all other classes are “children” or subclasses of that class

� here is an example of the inheritance tree for Integer:

java.lang.Object
|
+--java.lang.Number

|
+--java.lang.Integer

� Integer is a subclass of Number and Number is a subclass of Object

� Integer is also a subclass of Object

� conversely a parent is also called a superclass

� Object is a superclass of Number and Number is a superclass of Integer

� Object is also a superclass of Integer

� Object is also called the base class of Integer

cs3101-003-java-spring2003-sklar-lect03 20� �

� �

inheritance tree (2).

� as you move DOWN the inheritance tree from the root to the leaf, you are extending
subclasses from parent classes

– parent classes are also called superclasses

– or base classes

– children classes are derived from their parents

� as you move UP the inheritance tree from the leaf to the root, you can say that each
subclass is a more specific version of its parent

� this is known as the is-a relationship between a subclass and the parent class that the
child extends

� the keyword this is used to specify a member of the current or immediate class

cs3101-003-java-spring2003-sklar-lect03 21� �

� �

overriding methods.

� when you extend a class, you can override methods defined in the parent class by
defining them again in the child (and giving the child version different behavior)

� the rule is: the version of any method that is invoked is the definition closest to the leaf of
the tree

� if you want to refer to the version of the method in a class’s superclass, you use the
super reference

cs3101-003-java-spring2003-sklar-lect03 22� �

� �

overloading methods (1).

� in addition to changing precisely what a method does, you can also change the
arguments to that method

� this is very useful if you are changing the data type of data objects defined in the class

� you can create a new version of a method which has different arguments from the version
of the method defined in the class’s superclass

� this is what happens when we use different versions of the println() method:

int i = 5;
String s = "hello";
System.out.println(i);
System.out.println(s);

cs3101-003-java-spring2003-sklar-lect03 23� �

� �

overloading methods (2).
� in other words, you are using the same method name with formal parameters of different

types

� example:

– java.lang.System has-a variable called out,
which is-a java.io.PrintStream

– whose declarations include:

public void println();
public void println(boolean x);
public void println(char x);
public void println(double x);
public void println(float x);
public void println(int x);
public void println(Object x);
public void println(String x);

� these are all different ways of printing data, but the difference is the type of object being
printed

cs3101-003-java-spring2003-sklar-lect03 24� �

� �

other terminology...

� polymorphism

– “having many forms”

– lets us use different implementations of a single class

– we will talked about this later in relation to interfaces

– a polymorphic reference can refer to different types of objects at different times

� abstract class

– represents a generic concept in a class hierarchy

– cannot be instantiated — can only be extended

cs3101-003-java-spring2003-sklar-lect03 25� �

� �

example.

public class Quarter extends Coin {

// overload constructor
public Quarter() {
value = 25;
flip();

} // end of Quarter()

OR

public Quarter() {
super(25);

} // end of Quarter()

} // end of class Quarter

cs3101-003-java-spring2003-sklar-lect03 26� �

� �

comparing objects (1).

� comparing two Java objects is tricky

� you have to be careful of what you are comparing:

– is it the value of some member(s) of the class?

– or is it the reference?

� using == compares the references

� which is not the same as comparing the values of member(s) of the class

� many classes have a method called compareTo() to compare the value of member(s)
of the class

cs3101-003-java-spring2003-sklar-lect03 27� �

� �

comparing objects (2).
� here’s an example from the Coin class:

– comparing the value of the face member of two coins:

Coin coin0 = new Coin(10);
Coin coin1 = new Coin(10);
if (coin0.getValue() == coin1.getValue()) {
System.out.println("coins 0 and 1 have the same value");

}

– versus comparing the references:

if (coin0 == coin1) {
System.out.println("coins 0 and 1 are the same");

}

cs3101-003-java-spring2003-sklar-lect03 28� �

� �

comparing objects (3).

� in order to compare the value of two Strings, we need to use the method
public int compareTo(String str)
from the java.lang.String class

� this method does a lexical comparison of its String argument with the current object
(i.e., its instantiated value)

� it returns an int as follows:
if the current object... then the method returns
is the same text as str 0
comes lexically before str an int � 0 (e.g., -1)
comes lexically after str an int � 0 (e.g., +1)

� using == to compare two Strings compares their addresses, NOT the values of the text
they store

� this is the same for comparing any two objects in Java

� most classes define a compareTo() method, just as most classes define a
toString() method

cs3101-003-java-spring2003-sklar-lect03 29� �

� �

comparing objects (4).

� for example:

public class ex13d {
public static void main(String[] args) {
String s1 = new String("hello");
String s2 = new String("hello");
System.out.println("s1=["+s1+"]");
System.out.println("s2=["+s2+"]");
System.out.println("(s1 == s2) = " + (s1 == s2));
System.out.println("s1.compareTo(s2)="+s1.compareTo(s2));
System.out.println("s2.compareTo(s1)="+s2.compareTo(s1));

} // end of main()
} // end of class ex13d

� sample output:

s1=[hello]
s2=[hello]
(s1 == s2) = false
s1.compareTo(s2)=0
s2.compareTo(s1)=0

cs3101-003-java-spring2003-sklar-lect03 30� �

� �

comparing objects (5).

� so we could add to our Coin class:

public int compareTo(Coin coin) {
if (value == coin.getValue()) {

return 0;
}
else if (value < coin.getValue()) {

return -1;
}
else {

return 1;
}

} // end of compareTo()

cs3101-003-java-spring2003-sklar-lect03 31� �

� �

exercise.
� create a class called Card which is a playing card

� the card has a face (hearts, diamonds, clubs or spades)

� the card has a value (2..10, J, Q, K, A), all face cards have value 10

� define a constructor that randomly sets the card’s face and value

� define methods to return the card’s face and value

� define another method called pick that will change the card’s face and value, as if you
picked another card from the deck

� create a second class that contains a main() method

� define variable(s) in the second class of type Card

� loop inside the main(), randomly picking cards until the total is greater than or equal to
21

� assume that you replace each card in the deck immediately after it has been picked (so
you don’t have to keep track of which cards you have picked)

� extension: modify the exercise so that you do keep track of which cards have been picked

cs3101-003-java-spring2003-sklar-lect03 32� �

