cs3101-003 Java: lecture #3

® NEws:

— homework #2 due today
— homework #3 out today

e today’s topics:

— classes and objects
— formatting output
— writing your own classes
— making sense of keywords
* this
* super
« final
* public
* private
* static

€s3101-003-java-spring2003-sklar-lect03

N

classes.

e classes are the block around which Java is organized
e classes are composed of

— data elements:
x variables — i.e., their values can change during the execution of a program
* constants — i.e., their values CANNOT change during the execution of a program
- like variables, they have a type, a name and a value
— methods

+ modules that perform actions on the data elements
- like variables, they have a type, a name and a value

- unlike variables, the type can be void, which means that they don’t really have a
value

* constructors — special types of methods used to set up an object before it is used
for the first time

e groups of related classes are organized into packages

€s3101-003-java-spring2003-sklar-lect03

N

classes: define objects.

e are “blueprints” for creating instances of objects
e example: a house

— class = architect’s blueprint
— instance = a house built following that blueprint

e instantiate = to build the house

e you can build MANY houses using the same blueprint, so you can instantiate many
objects using the same class

€s3101-003-java-spring2003-sklar-lect03

N

classes: contain members.

e data declarations (e.g., the people and the stuff inside the house)

— constants
— variables

e methods (e.g., the things people do with the stuff)

— actions that are performed on the object and/or with its data

— a constructor is a special method used to instantiate an object of that class
— some methods may change the values of the variables

— some methods may return the values of the variables

e scope (e.g., where can people do things with the stuff?)

— local vs global
— Instance data
— method data

€s3101-003-java-spring2003-sklar-lect03

classes: instantiating objects.

e in order to use a class, you instantiate it by creating an object of that type

e this is kind of like declaring a variable

| nport java.util.*;
public class ex3a {
public static void main(String[] args) {
Dat e now = new Date();
Random rnd = new Randon{ now. getTine());
Systemout.printin("here are ten positive integers:");
for (int i=0; i<10; i++) {
Systemout.printin(Math.abs(rnd.nextint()));
} /1l end of main()
} /'l end of class ex3a

€s3101-003-java-spring2003-sklar-lect03 5

writing your own classes (1).

e YOU can create your own classes in two ways:

— by writing a completely new class
— by extending an existing class

€s3101-003-java-spring2003-sklar-lect03

N

N

writing your own classes (2).

e When you write your own class, you can define

— “global” data elements

* variables
* constants

— methods
— constructor

€s3101-003-java-spring2003-sklar-lect03

variables.

e have a name, type and value
e value is initialized, to O for numbers (unlike C)

e have “global” scope if they are declared outside of any method

€s3101-003-java-spring2003-sklar-lect03

N

constants.

e their values CANNOT change during the execution of a program
e i.e., their values remain constant
e like variables, they have a type, a name and a value

e the keyword f i nal indicates that the variable is a constant and its value will not change
during the execution of the program

e example:

public class java.lang. Math {
static final double PI=3.1415927...;

} I/ end of Math cl ass

€s3101-003-java-spring2003-sklar-lect03 9

N

method declaration.

e like a variable, has:

— data type:
* primitive data type, or
* class
— name (i.e., identifier)
e also has:

— arguments (optional)
* also called parameters
x formal parameters are in the blueprint, i.e., the method declaration
x actual parameters are in the object, i.e., the run time instance of the class

— throws clause (optional)
(we’ll defer discussion of this until later in the term)

— body
— return value (optional)

€s3101-003-java-spring2003-sklar-lect03 10

method use.

e program control jumps inside the body of the method when the method is called (or
invoked)

e arguments are treated like local variables and are initialized to the values of the calling
arguments

e method body (i.e., statements) are executed
e method returns to calling location
e if method is not of type void, then it also returns a value

— return type must be the same as the method’s type

— calling sequence (typically) sets method’s return value to a (local) variable; or uses
the method’s return value in some way (e.g., a print statement)

€s3101-003-java-spring2003-sklar-lect03 11

N

constructor.

e a constructor is a special method that is invoked when an object is instantiated
e a constructor can have arguments, like any other method

e a constructor does not return a value

e a constructor’s name is the same as the name of the class to which it belongs

e a constructor is invoked by using the new keyword

e example:

Dat e now = new Date();
Randomrl = new Random();
Random r2 = new Randonm(now. getTine());

€s3101-003-java-spring2003-sklar-lect03 12

N

encapsulation and visibility.

e objects should be self-contained and self-governing
e only methods that are part of an object should be able to change that object’s data
e some data elements should not even be seen (or visible) outside the object

e public data elements can be seen (i.e., read) and modified (i.e., written) from outside the
object

e private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from
inside the object

e typically, variables are private and methods that provide access to them (both read and
write) are public

e typically, constants are public
e example: house

— walls provide privacy for the inside
— windows provide public viewing of some of the inside

€s3101-003-java-spring2003-sklar-lect03 13

N

example.

public class Coin {

/| declare constants
public static final int HEADS =
public static final int TAILS = 1;

|
e

/'l declare vari abl es
private int face;
private int val ue;

/] constructor
public Coin(int value) {
t hi s. val ue = val ue;

flip();
} // end of Coin()

€s3101-003-java-spring2003-sklar-lect03

14

N

/[l flip the coin by randomy choosing a value for the face
public void flip() {

face = (int)(Mth. randon() *2);
} [/ end of flip()

[/ return the face val ue

public int getFace() {
return face;

} /'l end of getFace()

[/ return the coin’s val ue

public int getValue() {
return val ue;

} // end of getVal ue()

€s3101-003-java-spring2003-sklar-lect03

15

N

/[l return the coin’s face value as a String
public String toString() {

String faceNane;

if (face == HEADS) {

faceNane = "heads":
}
el se {

faceNane = "tail s";
}

return faceNane;
} /1] end of toString()

} /1l end of class Coin

€s3101-003-java-spring2003-sklar-lect03

16

static modifier (1).

e When we instantiate an object in order to use it, we are creating an instance variable
e.g., Randomr = new Randon();

e some members in some classes are static which means that they don’t have to be
instantiated to be used

e for example, all the methods inthe j ava. | ang. Mat h classare st ati c

— you don’t need to create an object reference variable whose type is Mat h in order to
use the methods in the Mat h class

—-e.g., Math. abs(),Math. random()

e you use the name of the class preceding the dot operator, instead of the name of the
Instance variable, in order to access the static members of the class

e .0, Mat h. randon() vsr. next Fl oat () (where r is the instance variable of type
Randomthat we created above)

e that is why we can use mai n() without instantiating anything
l.e.,public static void main()

€s3101-003-java-spring2003-sklar-lect03 17

static modifier (2).

e constants, variables and methods can all be static

e except constructors
(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

e typically, constants are static

e example:

public class Coin {
public static final i1nt HEADS=O;
public static final int TAILS=1,

} I/ end of Coin class

e We can now access Coi n. HEADS and Coi n. TAI LS without instantiating and/or
without referring to a specific instance variable

€s3101-003-java-spring2003-sklar-lect03 18

N

Inheritance.

e inheritance is the means by which classes are created out of other classes

e it is a cornerstone of object-oriented programming

e the idea is to create classes that can be re-used from one application to another
e classes contain data objects and methods

e you want to be able to change the data type of the data objects and still be able to use the
same methods

e you also want to be able to change the flavor of what the methods do

€s3101-003-java-spring2003-sklar-lect03 19

N

Inheritance tree (1).

e think of the most primitive Java class, Qbj ect as being at the root of the inheritance tree
e all other classes are “children” or subclasses of that class

e here is an example of the inheritance tree for | nt eger:

j ava. | ang. Qoj ect

+--j ava. | ang. Nunber

+--java. |l ang. | nt eger
e | nt eger isasubclass of Nunber and Nunber is a subclass of Cbj ect
e | nt eger is also a subclass of Cbj ect
e conversely a parent is also called a superclass
e (bj ect isasuperclass of Nunber and Nunber is a superclass of | nt eger
e (bj ect is also a superclass of | nt eger
e (bj ect is also called the base class of | nt eger

€s3101-003-java-spring2003-sklar-lect03 20

Inheritance tree (2).

e as you move DOWN the inheritance tree from the root to the leaf, you are extending
subclasses from parent classes

— parent classes are also called superclasses
— or base classes
— children classes are derived from their parents

e as you move UP the inheritance tree from the leaf to the root, you can say that each
subclass is a more specific version of its parent

e this is known as the is-a relationship between a subclass and the parent class that the
child extends

e the keyword t hi s is used to specify a member of the current or immediate class

€s3101-003-java-spring2003-sklar-lect03 21

overriding methods.

e When you extend a class, you can override methods defined in the parent class by
defining them again in the child (and giving the child version different behavior)

e the rule is: the version of any method that is invoked is the definition closest to the leaf of
the tree

e if you want to refer to the version of the method in a class’s superclass, you use the
super reference

€s3101-003-java-spring2003-sklar-lect03 22

overloading methods (1).

e in addition to changing precisely what a method does, you can also change the
arguments to that method

e this is very useful if you are changing the data type of data objects defined in the class

e YOU can create a new version of a method which has different arguments from the version
of the method defined in the class’s superclass

e this is what happens when we use different versions of the pri nt | n() method:

int 1 = 5;

String s = "hell 0";
Systemout.println(i);
Systemout.println(s);

€s3101-003-java-spring2003-sklar-lect03 23

N

overloading methods (2).

e in other words, you are using the same method name with formal parameters of different

types
e example:

—j ava. | ang. Syst emhas-a variable called out ,
whichis-aj ava.i o. Print Stream

— whose declarations include:

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

O O 0O O O O O

C

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

pri
pri
pri
pri
pri
pri
pri
pri

ntln();

ntl n(boolean x);
ntln(char x);
ntl n(double x);
ntin(float x);
ntln(int x);
ntln(Cbject x);
ntin(String x);

e these are all different ways of printing data, but the difference is the type of object being

printed

€s3101-003-java-spring2003-sklar-lect03

24

N

other terminology...

e polymorphism
— *having many forms”
— lets us use different implementations of a single class
— we will talked about this later in relation to interfaces
— a polymorphic reference can refer to different types of objects at different times

e abstract class

— represents a generic concept in a class hierarchy
— cannot be instantiated — can only be extended

€s3101-003-java-spring2003-sklar-lect03

25

N

example.

public class Quarter extends Coin {

/] overl oad constructor

public Quarter() {
val ue = 25;

Flip();
} /'l end of Quarter()

OR

public Quarter() {
super(25);
} /] end of Quarter()

} /] end of class Quarter

€s3101-003-java-spring2003-sklar-lect03

26

N

comparing objects (1).

e comparing two Java objects is tricky
e you have to be careful of what you are comparing:

— is it the value of some member(s) of the class?
— or is it the reference?

e using == compares the references
e Which is not the same as comparing the values of member(s) of the class

e many classes have a method called conpar eTo() to compare the value of member(s)
of the class

€s3101-003-java-spring2003-sklar-lect03 27

comparing objects (2).

e here’s an example from the Coi n class:

— comparing the value of the f ace member of two coins:
Coin coin0 = new Coin(10);
Coin coinl = new Coin(10);
i f (coinO.getValue() == coinl.getValue()) {
Systemout.println("coins O and 1 have the sane val ue");

}

— versus comparing the references:

If (coin0 == coinl) {
Systemout.printin("coins O and 1 are the sane");

}

€s3101-003-java-spring2003-sklar-lect03 28

comparing objects (3).

e in order to compare the value of two St r i ngs, we need to use the method
public int conpareTo(String str)
fromthe j ava. | ang. Stri ng class

e this method does a lexical comparison of its St r i ng argument with the current object
(i.e., its instantiated value)

e itreturnsani nt as follows:
if the current object... then the method returns
IS the same textas st r 0
comes lexically beforestr |ani nt <0 (e.g.,-1)
comes lexically afterstr |ani nt >0 (e.g., +1)

e using == to compare two St r i ngs compares their addresses, NOT the values of the text
they store

e this is the same for comparing any two objects in Java

e most classes define a conpar eTo() method, just as most classes define a
toString() method

€s3101-003-java-spring2003-sklar-lect03 29

N

N

comparing objects (4).

e for example:

public class ex13d {
public static void main(String[] args) {
String sl new String("hello");
String s2 new String("hello");
Systemout.println("sl=["+s1+"]");
Systemout.println("s2=["+s2+"]");
Systemout.println("(sl ==s2) =" + (sl ==5s2));
Systemout.println("sl.conpareTo(s2)="+sl. conpareTo(s2));
Systemout.println("s2.conpareTo(sl)="+s2. conpareTo(sl));
} /1 end of main()
} /1 end of class ex13d

e sample output:

sl=[hel | 0]
s2=[hel | 0]
(sl == s2) = fal se
sl. conpareTo(s2)=0
s2. conpareTo(sl) =0

€s3101-003-java-spring2003-sklar-lect03

30

N

comparing objects (5).

e 50 we could add to our Coi n class:

public int conpareTo(Coin coin) {

I f (value == coin.getValue()) {
return O;

}

else if (value < coin.getValue()) {
return -1,

}

el se {
return 1;

}
} /'l end of conpareTo()

€s3101-003-java-spring2003-sklar-lect03

31

N

exercise.

e create a class called Car d which is a playing card

e the card has a face (hearts, diamonds, clubs or spades)

e the card has a value (2..10, J, Q, K, A), all face cards have value 10
e define a constructor that randomly sets the card’s face and value

e define methods to return the card’s face and value

e define another method called pi ck that will change the card’s face and value, as if you
picked another card from the deck

e create a second class that contains a mai n() method
e define variable(s) in the second class of type Car d

e loop inside the mai n() , randomly picking cards until the total is greater than or equal to
21

e assume that you replace each card in the deck immediately after it has been picked (so
you don’t have to keep track of which cards you have picked)

e extension: modify the exercise so that you do keep track of which cards have been picked

€s3101-003-java-spring2003-sklar-lect03 32

