
cs3101-003 Java: lecture #6
� news:

– homework #5 due today

– little quiz today

– it’s the last class!

– please return any textbooks you borrowed from me

� today’s topics:

– interfaces

– recursion

– data structures

– threads

cs3101-003-java-spring2003-sklar-lect06 1

interfaces (1).
� an interface is a group of abstract methods that are defined by all classes that implement

the interface

� an abstract method is one that does not have an implementation, i.e., there is no body of
code for the method

� polymorphism means “having many forms”

– lets us use different implementations of a single interface

– binding happens when a particular implementation is locked to an interface

– this can happen at compile time or at run time

– an example of a run-time or dynamic binding is:
((Philosopher)current).pontificate();

from the example to follow

cs3101-003-java-spring2003-sklar-lect06 2

interfaces (2).

public interface Speaker {

public void speak();

public void announce(String str);

} // end of Speaker interface

cs3101-003-java-spring2003-sklar-lect06 3

interfaces (3).

public class Philosopher implements Speaker {
private String philosophy;

public Philosopher (String thoughts) {
philosophy = thoughts;

} // end of Philosopher constructor

public void speak () {
System.out.println(philosophy);

} // end of Philosopher method speak

public void announce (String announcement) {
System.out.println(announcement);

} // end of Philosopher method announce

public void pontificate() {
for (int i=0; i<5; i++)
System.out.println(philosophy);

} // end of Philosopher method pontificate

} // end of Philosopher class

cs3101-003-java-spring2003-sklar-lect06 4

interfaces (4).

public class Dog implements Speaker {

public void speak() {
System.out.println("woof");

} // end of Dog method speak

public void announce(String arf) {
System.out.println("woof: " + arf);

} // end of Dog method announce

} // end of class Dog

cs3101-003-java-spring2003-sklar-lect06 5

interfaces (5).

public class Talking {

public static void main(String[] args) {

Speaker current;

current = new Dog();
current.speak();

current = new Philosopher("I think, therefore I am.");
current.speak();

((Philosopher)current).pontificate();

} // end of main()

} // end of Talking class

cs3101-003-java-spring2003-sklar-lect06 6

recursion.
� recursion is defining something in terms of itself

� there are many examples in nature

� and in mathematics

� and in computer graphics, e.g., the Koch snowflake (from our gui example in the gallery)

cs3101-003-java-spring2003-sklar-lect06 7

power function.
� power is defined recursively: ��� �

� �����
� ������

� 	
 � � � � �� �

� 	
 � �
 � �� � �

�� � �� � � � � � �� � �� �� � �
cs3101-003-java-spring2003-sklar-lect06 8

here it is in a Java method.
� public int power (int x, int y) {

if (y == 0) {
return(1);

}
else if (y == 1) {

return(x);
}
else {

return(x * power(x, y-1));
}

} // end of power() method

� Notice that power() calls itself!

� You can do this with any method except main()

� BUT beware of infinite loops!!!

� You have to know when and how to stop the recursion — what is the stopping condition

cs3101-003-java-spring2003-sklar-lect06 9

let’s walk through power(2,4).
�

call x y return value

1 power(2,4) 2 4 2 * power(2,3)
2 power(2,3) 2 3 2 * power(2,2)
3 power(2,2) 2 2 2 * power(2,1)
4 power(2,1) 2 1 2

� the first is the original call

� followed by three recursive calls

cs3101-003-java-spring2003-sklar-lect06 10

stacks.
� the computer uses a data structure called a stack to keep track of what is going on

� think of a stack like a stack of plates

� you can only take off the top one

� you can only add more plates to the top

� this corresponds to the two basic stack operations:

– push — putting something onto the stack

– pop — taking something off of the stack

� when each recursive call is made, power() is pushed onto the stack

� when each return is made, the corresponding power() is popped off of the stack

cs3101-003-java-spring2003-sklar-lect06 11

another example: factorial.
� factorial is defined recursively:

�� �
� �

� ��
� 	 � � �
 � �� �

�� � �� � � � � � �� � � � � � �
 ��

� (for � � �)

cs3101-003-java-spring2003-sklar-lect06 12

here it is in a Java method.
� public int factorial (int N) {

if (N == 1) {
return(1);

}
else {

return(N * factorial(N-1));
}

} // end of factorial() method

cs3101-003-java-spring2003-sklar-lect06 13

recursive iteration.

public class ex6a {

Random r = new Random();
Coin[] pocket = new Coin[5];

public static void main(String[] args) {
ex6a ex = new ex6a();
for (int i=0; i<5; i++) {
ex.pocket[i] = new Coin();

}
ex.printPocket(0);

} // end of main() method

public void printPocket(int index) {
if (index < pocket.length) {
System.out.print(pocket[index].getValue() + " ");
printPocket(index+1);

}
else {
System.out.println();

}
} // end of printPocket() method

} // end of ex6a class

cs3101-003-java-spring2003-sklar-lect06 14

normal iteration.
� where normal iteration looks like this:

public void printPocket() {
for (int index=0; index<pocket.length; index++) {
System.out.print(pocket[index].getValue() + " ");

}
System.out.println();

} // end of printPocket() method

cs3101-003-java-spring2003-sklar-lect06 15

back to recursive iteration.
� in the recursive version, each call is like one iteration inside the for loop in the iterative

version
call index output next call

1 printPocket(0) 0 pocket[0].getValue() printPocket(1)
2 printPocket(1) 1 pocket[1].getValue() printPocket(2)
3 printPocket(2) 2 pocket[2].getValue() printPocket(3)
4 printPocket(3) 3 pocket[3].getValue() printPocket(4)
5 printPocket(4) 4 pocket[4].getValue() printPocket(5)
6 printPocket(5) 5 newline — —

cs3101-003-java-spring2003-sklar-lect06 16

more on recursion.
� With recursion, each time the method is invoked, one step is taken towards the resolution

of the task the method is meant to complete.

� Before each step is executed, the state of the task being completed is somewhere in the
middle of being completed.

� After each step, the state of the task is one step closer to completion.

� In the example above, each time ��� �� �� �� 	
 � � � � is called, the array is printed from the

� -th element to the end of the array.

� In the � ��
 � � � �
 � example, each time the method is called, power is computed for each

�� , in terms of the previous �� � � .

� In the ��
 � � �� �
 � � � � example, each time the method is called, factorial is computed for
each � , in terms of the previous � �
 .

� One classic example is “Towers of Hanoi”. In each turn or iteration, one disk is moved
from one tower to another. At each point (i.e., at the start of each recursive call), the state
of the towers is in the middle of completion, until the final solution is reached.

cs3101-003-java-spring2003-sklar-lect06 17

search.
� Often, when you have data stored in an array, you need to locate an element within that

array.

� This is called searching.

� Typically, you search for a key value (simply the value you are looking for) and return its
index (the location of the value in the array)

� As with sorting, there are many searching algorithms.

– linear search

� standard linear search, on sorted or unsorted data

– binary search

� iterative binary search, on sorted data only

� recursive binary search, on sorted data only

cs3101-003-java-spring2003-sklar-lect06 18

linear search.

public int linearSearch(int key) {
for (int i=0; i<pocket.length; i++) {
if (key == pocket[i].getValue()) {
return(i);

}
}
return(-1);

} // end of linearSearch() method

cs3101-003-java-spring2003-sklar-lect06 19

binary search (1).
� Binary search is much more efficient than linear search, ON A SORTED ARRAY. (It

CANNOT be used on an unsorted array!)

� It takes the strategy of continually dividing the search space into two halves, hence the
name binary. Say you are searching something very large, like the phone book. If you
are looking for one name (e.g., “Gilligan”), it is extremely slow and inefficient to start
with the A’s and look at each name one at a time, stopping only when you find
“Gilligan”. But this is what linear search does. Binary search acts much like you’d act if
you were looking up “Gilligan” in the phone book.

– You’d open the book somewhere in the middle, then determine if “Gilligan” appears
before or after the page you have opened to.

– If “Gilligan” appears after the page you’ve selected, then you’d open the book to a
later page.

– If “Gilligan” appears before the page you’ve selected, then you’d open the book to an
earlier page.

– You’d repeat this process until you found the entry you are looking for.

cs3101-003-java-spring2003-sklar-lect06 20

binary search (2).

public int binarySearch(int key) {
int lo = 0, hi = pocket.length-1, mid;
while (lo <= hi) {
mid = (lo + hi) / 2;
if (key == pocket[mid].getValue()) {
return(mid);

}
else if (key < pocket[mid].getValue()) {
hi = mid - 1;

}
else {
lo = mid + 1;

}
} // end while
return(-1);

} // end of binarySearch() method

cs3101-003-java-spring2003-sklar-lect06 21

recursive binary search (1).

public int recursiveBinarySearch(int key, int lo, int hi) {
if (lo <= hi) {
int mid = (lo + hi) / 2;
if (key == pocket[mid].getValue()) {
return(mid);

}
else if (key < pocket[mid].getValue()) {
return(recursiveBinarySearch(key, lo, mid-1));

}
else {
return(recursiveBinarySearch(key, mid+1, hi));

}
}
else {
return(-1);

}
} // end of recursiveBinarySearch() method

cs3101-003-java-spring2003-sklar-lect06 22

� invoke with:
int i = recursiveBinarySearch(key,0,pocket.length);

cs3101-003-java-spring2003-sklar-lect06 23

data structures.
� a data structure is essentially an abstract data type

� it maps a virtual model of data to a real data type

� like an array or a Vector or a class

� there are several classic data structures in computer science

� we’ll look at a few:

– linked list

– doubly linked list

– queue

– stack

� each has rules about how to add and remove elements

� examples:

– a queue is also called FIFO — first in, first out

– a stack is also called LIFO — last in, first out

cs3101-003-java-spring2003-sklar-lect06 24

implementation vs interface.
� when talking about data structures, there is a distinction between implementation and

interface

� implementation — refers to the actual underlying implementation; like linked list or
doubly linked list

� interface — refers to an abstract view of the data structure, overlying the
implementation; like queue or stack

� for example, a queue can be implemented using a linked list

� the interfaces govern how items can be added and removed from the data structure

cs3101-003-java-spring2003-sklar-lect06 25

linked list.
� a linked list chains instances of a class together using a field called “next”, which points

to the next instance of the class in the chain

� yes, this looks like another type of array or Vector

public class InvItem {
private String name;
private int units;
private float price;
InvItem next; // points to the next InvItem in the chain

}

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

next

InvItem

(end of list)
NULL

cs3101-003-java-spring2003-sklar-lect06 26

adding an item to a linked list (1).
� to add an item to a linked list, you simply instantiate one instance of the InvItem and then

set the “next” fields in the new item and the item in the linked list after which the new
item is being inserted:

name=A
units
price

next

InvItem

name=B
units
price

next

InvItem

name=C
units
price

next

InvItem

name=D
units
price

next

InvItem

(end of list)
NULL

cs3101-003-java-spring2003-sklar-lect06 27

adding an item to a linked list (2).
� here’s a code fragment:

// top-level declaration
InvItem linkedList;
.
.
.
// somewhere inside a method...
InvItem newItem = new InvItem(name,units,price);
InvItem listItem; // pointer to list item after which

// newItem will be inserted
newItem.next = listItem.next;
listItem.next = newItem;
.
.
.

cs3101-003-java-spring2003-sklar-lect06 28

removing an item from a linked list.
� to remove an item to a linked list, you simply move the “next” field pointers around

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

next

InvItem

(end of list)
NULL

cs3101-003-java-spring2003-sklar-lect06 29

circular linked list.
� sometimes linked lists are circular, where the “next” field from the last item points back

to the first item

� in this case, there is typically an external “pointer” called “head” which points to the first
item on the list

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

InvItem

next

head

cs3101-003-java-spring2003-sklar-lect06 30

doubly linked list (1).
� a doubly linked list chains instances of a class together using two fields called “next”

(which points to the next instance of the class in the chain) and “prev” (which points to
the previous instance of the class in the chain).

(end of list)
NULL

name
units
price

next

InvItem

prev

name
units
price

next

InvItem

prev

name
units
price

next

InvItem

prev
(start of list)

NULL

cs3101-003-java-spring2003-sklar-lect06 31

doubly linked list (2).
� for example:

public class InvItem {
private String name;
private int units;
private float price;
InvItem next; // points to the next InvItem in the chain
InvItem prev; // points to the previous InvItem in the chain

}

� when adding and removing items to a doubly linked list, you need to set the “next” and
“prev” fields, just as like with the (singly) linked list

cs3101-003-java-spring2003-sklar-lect06 32

circular doubly linked list.
� doubly linked lists can also be circular:

name
units
price

next

InvItem

prev

name
units
price

next

InvItem

prev

name
units
price

next

InvItem

prev

cs3101-003-java-spring2003-sklar-lect06 33

queue.
� a queue is like a check-out line at a store

� you can only add items (people) to the end of the line

� you can only remove items (people) from the front of the line

� hence, a queue is also called a FIFO (first in, first out)

� following are the typical names for queue routines:

– enqueue: for adding items to a queue

– dequeue: for removing items from a queue

cs3101-003-java-spring2003-sklar-lect06 34

stack.
� a stack is like a stack of plates

� you can only add items (plates) to the top of the stack

� you can only remove items (plates) from the top of the stack

� hence, a stack is also called a LIFO (last in, first out)

� following are the typical names for stack routines:

– push: for adding items to a stack

– pop: for removing items from a stack

cs3101-003-java-spring2003-sklar-lect06 35

stack vs queue: adding items.

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

next

InvItem

(end of list)
NULL

name
units
price

next

InvItem

NULL
(end of list)

new stack item gets added to the front (top) of the list

new queue item gets added to the end of the list

cs3101-003-java-spring2003-sklar-lect06 36

stack vs queue: removing items.

name
units
price

next

InvItem

name
units
price

next

InvItem

name
units
price

next

InvItem

(end of list)
NULL

queue items get removed from the front of the list

stack items get removed from the front (top) of the list

cs3101-003-java-spring2003-sklar-lect06 37

threads (1).
� a thread is a unit of sequential execution

� it is smaller than a program (application or applet)

� a Java program can have multiple threads, which allow several things to be going on at
the same time

� you have already been using implicit threads when programming GUIs

– one thread handled painting updates to your GUI

– another thread handled events

– another thread handled your applet’s main thread of execution

cs3101-003-java-spring2003-sklar-lect06 38

threads (2).
� you can create your own threads using java.lang.Thread

� the Thread class implements a Runnable interface

� the main methods to know about are:

– start()
causes the thread to begin execution by calling the thread’s run method

– run()
runs the body of the thread (like the main method in an application)

– verb+sleep()+
suspends the run method for a specified period of time

cs3101-003-java-spring2003-sklar-lect06 39

threads — example.

public class SimpleThread extends Thread {

private int id;
private int delay;

SimpleThread(int id, int delay) {
this.id = id;
this.delay = delay;

} // end of SimpleThread constructor

public void run() {
System.out.println("thread " + id + " started");
System.out.flush();
for (int i=0; i<10; i++) {
try {

sleep(delay);
}
catch(InterruptedException e) {

System.out.println("sleep interrupted: " + e);
}
System.out.println("thread " + id + ": i = " + i);

}
System.out.println("thread " + id + " finished");

} // end of run()

} // end of class SimpleThread

cs3101-003-java-spring2003-sklar-lect06 40

threads — example, cont.

public class TwoThreads {

public static void main(String[] args) {
SimpleThread t1 = new SimpleThread(1, 1000);
SimpleThread t2 = new SimpleThread(2, 1200);
t1.start();
t2.start();

} // end of main()

} // end of class TwoThreads

cs3101-003-java-spring2003-sklar-lect06 41

that’s it!
� have a good Spring :-)

cs3101-003-java-spring2003-sklar-lect06 42

