
� �

cs3157 lecture #4 notes.

mon 10 feb 2003

http://www.cs.columbia.edu/˜cs3157

� news

– homework #1 was posted last week, due mon feb 17

– see adjustments on web page:

� number of homeworks = 5 (10 points each)� number of labs = 10 (3.5 points each)� TA assignments

� today’s topics

– logical and bitwise operators, random numbers, character handling

– file I/O

– arrays, strings and pointers

– dynamic memory allocation

cs3157-spring2003-sklar-lect04 1� �

� �

logical operators.

� in C are the same as in Java
meaning C operator
AND &&
OR ||
NOT !

� since there are no boolean types in C, these are mainly used to connect clauses in if and
while statements

� remember that

– non-zero � ��	

– zero � ��
�

cs3157-spring2003-sklar-lect04 2� �

� �

bitwise operators.

� there are also bitwise operators in C, in which each bit is an operand:

meaning C operator
bitwise AND &
bitwise OR |

� example:

int a = 8; /* this is 1000 in base 2 */
int b = 15; /* this is 1111 in base 2 */

a & b

� 1000 (=8)
& 1111 (=15)

1000 (=8)
a | b

� 1000 (=8)
| 1111 (=15)

1111 (=15)

cs3157-spring2003-sklar-lect04 3� �

� �

logical vs bitwise operators.
� what is the output of the following code fragment?

int a = 12, b = 7;
printf("a && b = %d\n",a && b);
printf("a || b = %d\n",a || b);
printf("a & b = %d\n",a & b);
printf("a | b = %d\n",a | b);

cs3157-spring2003-sklar-lect04 4� �

� �

random numbers (1).

� with computers, nothing is random (even though it may seem so at times...)

� there are two steps to using random numbers in C:

1. seeding the random number generator

2. generating random number(s)

� standard library function:

#include <stdlib.h>

� seed function:

srand(time (NULL));

� random number function returns a number between 0 and RAND_MAX (which is

� ��

)

int i = rand();

cs3157-spring2003-sklar-lect04 5� �

� �

random numbers (2).

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void) {
int r;
srand(time (NULL));
r = rand() % 100;
printf("pick a number between 0 and 100...\n");
printf("was %d your number?", r);

}

cs3157-spring2003-sklar-lect04 6� �

� �

character handling functions (1).

� character handling library

#include <ctype.h>

� digit recognition functions (bases 10 and 16)

� alphanumeric character recognition

� case recognition/conversion

� character type recognition

� these are all of the form:

int isdigit(int c);

where the argument c is declared as an int, but it is intepreted as a char

so if c = ’0’ (i.e., the ASCII value ’0’, index=48), then the function returns true
(non-zero int)

but if c = 0 (i.e., the ASCII value NULL, index=0), then the function returns false (0)

cs3157-spring2003-sklar-lect04 7� �

� �

character handling functions (2).

digit recognition functions (bases 10 and 16)

� int isdigit(int c);

returns true (i.e., non-zero int) if c is a decimal digit (i.e., in the range ’0’..’9’);
returns 0 otherwise

� int isxdigit(int c);

returns true (i.e., non-zero int) if c is a hexadecimal digit (i.e., in the range
’0’..’9’,’A’..’F’); returns 0 otherwise

cs3157-spring2003-sklar-lect04 8� �

� �

character handling functions (3).

alphanumeric character recognition

� int isalpha(int c);

returns true (i.e., non-zero int) if c is a letter (i.e., in the range
’A’..’Z’,’a’..’z’); returns 0 otherwise

� int isalnum(int c);

returns true (i.e., non-zero int) if c is an alphanumeric character (i.e., in the range
’A’..’Z’,’a’..’z’,’0’..’9’); returns 0 otherwise

cs3157-spring2003-sklar-lect04 9� �

� �

character handling functions (4).

case recognition

� int islower(int c);

returns true (i.e., non-zero int) if c is a lowercase letter (i.e., in the range ’a’..’z’);
returns 0 otherwise

� int isupper(int c);

returns true (i.e., non-zero int) if c is an uppercase letter (i.e., in the range ’A’..’Z’);
returns 0 otherwise

case conversion

� int tolower(int c);

returns the value of c converted to a lowercase letter (does nothing if c is not a letter or if
c is already lowercase)

� int toupper(int c);

returns the value of c converted to an uppercase letter (does nothing if c is not a letter or
if c is already uppercase)

cs3157-spring2003-sklar-lect04 10� �

� �

character handling functions (5).

character type recognition

� int isspace(int c);

returns true (i.e., non-zero int) if c is a space; returns 0 otherwise

� int iscntrl(int c);

returns true (i.e., non-zero int) if c is a control character; returns 0 otherwise

� int ispunct(int c);

returns true (i.e., non-zero int) if c is a punctuation mark; returns 0 otherwise

� int isprint(int c);

returns true (i.e., non-zero int) if c is a printable character; returns 0 otherwise

� int isgraph(int c);

returns true (i.e., non-zero int) if c is a graphics character; returns 0 otherwise

cs3157-spring2003-sklar-lect04 11� �

� �

file I/O (1).
� file handling involves three steps:

1. opening the file

2. reading from and/or writing to the file

3. closing the file

� files in C are sequential access

� think of it as a cursor that sits at a position in the file

� with each read and write operation, you move that cursor’s position in the file

� the last position in the file is called the “end-of-file” and is typically written as: <EOF>

� all the functions described on the next few slides are defined in the <stdio.h> header
file

cs3157-spring2003-sklar-lect04 12� �

� �

file I/O (2).

opening files

� FILE *fopen(const char *filename, const char *mode);

� filename is a string containing the name of the file you want to open; this file is in the
current working directory or else you have to include a full path specification

� mode is one of the following:
mode meaning cursor position create file?
r read only beginning of file no
r+ read/write beginning of file no
w write only beginning of file yes
w+ read/write beginning of file yes
a write only end of file no
a+ read/write end of file no

the last column indicates whether the file is created if it does not exist — this is only
done with the w modes

� the function returns a value of type FILE *, which is a file pointer (we’ll talk about
pointers later today), or NULL if there is an error

cs3157-spring2003-sklar-lect04 13� �

� �

file I/O (3).

reading from and writing to files

� these functions are just like printf and scanf, except that instead of writing to the
screen and reading from the keyboard, they write to and read from a file

� for writing to a file:

int fprintf(FILE *fp, const char *format /*, args...*/);

this function returns the number of bytes written
fp is the file pointer of the file you are writing to

� for reading from a file:

int fscanf(FILE *fp, const char *format /*, args...*/);

this function returns the number of bytes read
fp is the file pointer of the file you are reading from

cs3157-spring2003-sklar-lect04 14� �

� �

file I/O (4).

closing files

� int close(FILE *fp);

fp is the pointer to the file you want to close (the value returned from a previous call to
fopen)

cs3157-spring2003-sklar-lect04 15� �

� �

strings (1).
� storing multiple characters in a single variable

� data type is still char

� BUT it has a length

� last character the is terminator: ’\0’, aka NULL

� string constants are surrounded by double quotes: "

� example:

char s[6] = "ABCDE";

cs3157-spring2003-sklar-lect04 16� �

� �

strings (2).

� example:

char s[6] = "ABCDE";

� storage looks like this: A B C D E

�

0

� so with strings, you really only access the values stored at indeces

�

through

 �� � � � �

,
since the value stored at

 �� � � � �

is always

�

0

cs3157-spring2003-sklar-lect04 17� �

� �

strings (3).

� printing strings

� format sequence: %s

� example:

#include <stdio.h>
int main(void) {
char str[6] = "ABCDE";
printf("str = %s\n", str);

} /* end of main() */

� output:

ABCDE

cs3157-spring2003-sklar-lect04 18� �

� �

strings (4).

� string handling library

#include <string.h>

� functions include:

int strlen(char *s);

this function returns the number of characters in s; note that this is NOT the same thing
as the number of characters allocated for the string array

� int strcmp(const char *s1, const char *s2);

“This function returns an integer greater than, equal to, or less than 0, if the string pointed
to by s1 is greater than, equal to, or less than the string pointed to by s2 respectively. The
sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes that differ in the strings being compared.”

� for more information and more string functions, do:

unix$ man strcmp

cs3157-spring2003-sklar-lect04 19� �

� �

arrays (1).
� a string is an array of characters

� an array is a “regular grouping or ordering”

� a data structure consisting of related elements of the same data type

� in C, an array has a length associated with it

� arrays need:

– data type

– name

– length

� length can be determined:

– statically — at compile time
e.g., char str1[10];

– dynamically — at run time
e.g., char *str2;

cs3157-spring2003-sklar-lect04 20� �

� �

arrays (2).

� defining a variable is called “allocating memory” to store that variable

� defining an array means allocating memory for a group of bytes, i.e., assigning a label to
the first byte in the group

� individual array elements are indexed

– starting with

�

– ending with

 �� � � � �

� indeces follow array name, enclosed in square brackets ([])
e.g., arr[25]

cs3157-spring2003-sklar-lect04 21� �

� �

array (3).

character array example

#include <stdio.h>
#define MAX 6
int main(void) {
char str[MAX] = "ABCDE";
int i;
for (i=0; i<MAX-1; i++) {
printf("%c", str[i]);

}
printf("\n");

} /* end of main() */

cs3157-spring2003-sklar-lect04 22� �

� �

arrays (4).

integer array example

#include <stdio.h>
#define MAX 6
int main(void) {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
int i;
for (i=0; i<MAX; i++) {
printf("%d", arr[i]);

}
printf("\n");

} /* end of main() */

cs3157-spring2003-sklar-lect04 23� �

� �

pointers (1).
� variables that contain memory addresses as their values

� other data types we’ve learned about in C use direct addressing

� pointers facilitate indirect addressing

� declaring pointers:

– pointers indirectly address memory where data of the types we’ve already discussed
is stored (e.g., int, char, float, etc.)

– declaration uses asterisks (*) to indicate a pointer to a memory location storing a
particular data type

� example:

int *count;
float *avg;

cs3157-spring2003-sklar-lect04 24� �

� �

pointers (2).

� ampersand & is used to dereference a pointer

� it says: return the address of the variable argument

� example:

int count = 12;
int *countPtr = &count;

� &count returns the address of count and stores it in the pointer variable countPtr

� a picture:
countPtr count� � 12

cs3157-spring2003-sklar-lect04 25� �

� �

pointers (3).

here’s another example:

int i = 3, j = -99;
int count = 12;
int *countPtr = &count;

and here’s what the memory looks like:

variable name memory location value

count 0xbffff4f0 12
i 0xbffff4f4 3
j 0xbffff4f8 -99
...
countPtr 0xbffff600 0xbffff4f0
...

cs3157-spring2003-sklar-lect04 26� �

� �

pointers (4).

� an array is some number of contiguous memory locations

� an array definition is really a pointer to the starting memory location of the array

� and pointers are really integers

� so you can perform integer arithmetic on them

� e.g., +1 increments a pointer, -1 decrements

� you can use this to move from one array element to another

cs3157-spring2003-sklar-lect04 27� �

� �

pointers (5).

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main() {
int i, *j, arr[5];
srand(time (NULL));
for (i=0; i<5; i++)
arr[i] = rand() % 100;

printf("arr=%p\n",arr);
for (i=0; i<5; i++) {
printf("i=%d arr[i]=%d &arr[i]=%p\n",i,arr[i],&arr[i]);

}
j = &arr[0];
printf("\nj=%p *j=%d\n",j,*j);
j++;
printf("after adding 1 to j:\n j=%p *j=%d\n",j,*j);

}

cs3157-spring2003-sklar-lect04 28� �

� �

pointers (6).

and the output is...

arr=0xbffff4f0
i=0 arr[i]=29 &arr[i]=0xbffff4f0
i=1 arr[i]=8 &arr[i]=0xbffff4f4
i=2 arr[i]=18 &arr[i]=0xbffff4f8
i=3 arr[i]=95 &arr[i]=0xbffff4fc
i=4 arr[i]=48 &arr[i]=0xbffff500

j=0xbffff4f0 *j=29
after adding 1 to j:
j=0xbffff4f4 *j=8

cs3157-spring2003-sklar-lect04 29� �

� �

dynamic memory allocation (1).

� malloc() allocates a block of memory:

void *malloc(size_t size);

� lifetime of the block is until memory is freed, with free():

void free(void *ptr);

� example:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

cs3157-spring2003-sklar-lect04 30� �

� �

dynamic memory allocation (2).

� memory leaks — memory allocated that is never freed:

char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {

strcpy(u, s);
strcat(u, t);
return u;

}
else {

return 0;
}

} /* end of combine() */

� u should be freed if return 0; is executed

� but you don’t need to free it if you are still using it!

cs3157-spring2003-sklar-lect04 31� �

� �

dynamic memory allocation (3).
� note: malloc() does not initialize data

� you can allocate and initialize with “calloc”:

void *calloc(size_t nmemb, size_t size);

– calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

� you can also change size of allocated memory blocks with “realloc”:

void *realloc(void *ptr, size_t size);

– realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly allocated
memory will be uninitialized.

� these are all functions in stdlib.h

� for more information: unix$ man malloc

cs3157-spring2003-sklar-lect04 32� �

� �

more arrays (1).

� “arrays” are defined by specifying an element type and number of elements

– statically:

int vec[100];
char str[30];
float m[10][10];

– dynamically:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

� for an array containing N elements, indeces are 0..N-1

� stored as a linear arrangement of elements

� often similar to pointers

cs3157-spring2003-sklar-lect04 33� �

� �

more arrays (2).

� C does not remember how large arrays are (i.e., no length attribute, unlike Java)

� given:

int x[10];
x[10] = 5; /* error! */

� ERROR! because you have only defined x[0]..x[9] and the memory location where x[10]
is can become something else...

� sizeof x gives the number of bytes in the array

� sizeof x[0] gives the number of bytes in one array element

� thus you can compute the length of x via:

int length_x = sizeof x / sizeof x[0];

cs3157-spring2003-sklar-lect04 34� �

� �

more arrays (3).

� when an array is passed as a parameter to a function:

– the size information is not available inside the function

– array size is typically passed as an additional parameter

printArray(x, length_x);

– or globally

#define VECSIZE 10
int x[VECSIZE];

cs3157-spring2003-sklar-lect04 35� �

� �

more arrays (4).
� array elements are accessed using the same syntax as in Java: array[index]

� C does not check whether array index values are sensible (i.e., no bounds checking)

� e.g., x[-1] or vec[10000] will not generate a compiler warning!

� if you’re lucky, the program crashes with

Segmentation fault (core dumped)

cs3157-spring2003-sklar-lect04 36� �

� �

more arrays (5).

� C references arrays by the address of their first element

� array is equivalent to &array[0]

� you can iterate through arrays using pointers as well as indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

cs3157-spring2003-sklar-lect04 37� �

� �

more arrays (6).

� example:

#include <stdio.h>
#define MAX 12
int main(void) {
int x[MAX]; /* declare 12-element array */
int i, sum;
for (i=0; i<MAX; i++) { x[i] = i; }
/* here, what is value of i? of x[i]? */
sum = 0;
for (i=0; i<MAX; i++) { sum += x[i]; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-spring2003-sklar-lect04 38� �

� �

more arrays (7).

� another example:

#include <stdio.h>
#define MAX 10
int main(void) {
int x[MAX]; /* declare 10-element array */
int i, sum, *p;
p = &x[0];
for (i=0; i<MAX; i++) { *p = i + 1; p++; }
p = &x[0];
sum = 0;
for (i=0; i<MAX; i++) { sum += *p; p++; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-spring2003-sklar-lect04 39� �

� �

2D arrays.
� 2-dimensional arrays

int weekends[52][2];

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] ...

�

weekends

� you can use indices or pointer math to locate elements in the array

– weekends[0][1]

– weekends+1

� weekends[2][1] is same as *(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

cs3157-spring2003-sklar-lect04 40� �

