
� �

cs3157 lecture #5 notes.

mon 17 feb 2003

http://www.cs.columbia.edu/˜cs3157

� news

– homework #1 is due today

– quiz #1 is on Wed Feb 19 in 833 Mudd (no labs)

� today’s topics

– advanced C programming

� advanced data types

� structured data types

� functions

� programs with multiple files

� extras

cs3157-spring2003-sklar-lect05 1� �

� �

advanced data types (1) — typedef.

� defining your own types using typedef

typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

cs3157-spring2003-sklar-lect05 2� �

� �

advanced data types (2) — typedef.

� defining your own boolean:

typedef char boolean;
#define FALSE 0
#define TRUE 1

� generally works, but beware:

check = x > 0;
if (check == TRUE) {...}

� if x is positive, check will be non-zero, but may not be � � �

cs3157-spring2003-sklar-lect05 3� �

� �

advanced data types (3) — enum.
� define new integer-like types as enumerated types:

enum weather { rain, snow=2, sun=4 };

typedef enum {
Red, Orange, Yellow, Green, Blue, Violet

} Color;

� look like C identifiers (names)

� are listed (enumerated) in definition

� treated like integers

– start with 0 (unless you set value)

– can add, subtract — e.g., color + weather

– cannot print as symbol automatically (you have to write code to do the translation)

cs3157-spring2003-sklar-lect05 4� �

� �

advanced data types (4) — enum.

� just fancy syntax for an ordered collection of integer constants:

typedef enum {
Red, Orange, Yellow

} Color;

is like

#define Red 0
#define Orange 1
#define Yellow 2

� here’s another way to define your own boolean:

typedef enum {False, True} boolean;

cs3157-spring2003-sklar-lect05 5� �

� �

advanced data types (5) — data objects.

� C does not have Objects in the OOP sense (like Java and C++ do)

� but C has data objects — i.e., variables

short int x;
char ch;
float pi = 3.1415;
float f, g;

� scope

– variables defined in { } block are active only in block — e.g., local

– variables defined outside a block are global (persist during program execution)

– static variables may be declared outside a block, but are not globally visible

cs3157-spring2003-sklar-lect05 6� �

� �

advanced data types (6) — data objects.

� variables must be declared before they are used

� we have used variables within main() and within functions

� global variables

– are declared outside main() and outside any function, usually at the top of the
program file, after any #’s (preprocessor directives)

– can be “seen” anywhere

� local variables

– are declared within a program block or function

– they can only be seen inside the block in which they are defined

– function arguments are local to the function they are passed to

cs3157-spring2003-sklar-lect05 7� �

� �

advanced data types (7) — usage.
� a variable is conceptually a container that can hold a value

� default value is (mostly) undefined — you should treat it as a random number

� the compiler may warn you about uninitialized variables, but not as reliably as Java

� variables are always passed by value, but you can pass the address of a variable to a
function:

scanf("%d%f", &x, &f);

cs3157-spring2003-sklar-lect05 8� �

� �

advanced data types (8) — sizes.

� every data object in C has:

– a name and data type (specified in definition)

– an address (its relative location in memory)

– a size (number of bytes of memory it occupies)

– visibility (which parts of program can refer to it)

– lifetime (period during which it exists)

� Unlike scripting languages and Java, all C data objects have a fixed size over their
lifetime

– except dynamically created objects

� size of object is determined when object is created:

– global data objects at compile time (data)

– local data objects at run-time (stack)

– dynamic data objects by programmer (heap)

cs3157-spring2003-sklar-lect05 9� �

� �

structured data types (1).

� structured data types are available as:

object property
array [] enumerated; indexed from 0
struct names and types of fields
union made up of multiple elements, but

only one exists at a time;
each element could be a native data type,
a pointer or a struct

cs3157-spring2003-sklar-lect05 10� �

� �

structured data types (2) — arrays.

� “arrays” are defined by specifying an element type and number of elements

– statically:

int vec[100];
char str[30];
float m[10][10];

– dynamically:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

� for an array containing N elements, indeces are 0..N-1

� stored as a linear arrangement of elements

� often similar to pointers

cs3157-spring2003-sklar-lect05 11� �

� �

structured data types (3) — arrays.
� C does not remember how large arrays are (i.e., no length attribute, unlike Java)

� given:

int x[10];
x[10] = 5; /* error! */

� ERROR! because you have only defined x[0]..x[9] and the memory location where x[10]
is can become something else...

� sizeof x gives the number of bytes in the array

� sizeof x[0] gives the number of bytes in one array element

� thus you can compute the length of x via:

int length_x = sizeof x / sizeof x[0];

� note that this does not work if x is defined as:

int *x;

since in this case sizeof x refers to the pointer only

cs3157-spring2003-sklar-lect05 12� �

� �

structured data types (4) — arrays.

� when an array is passed as a parameter to a function:

– the size information is not available inside the function

– array size is typically passed as an additional parameter

printArray(x, length_x);

– or globally

#define VECSIZE 10
int x[VECSIZE];

– or as part of a struct (best practice; object-like)

typedef struct {
int x[10];
int length_x;

} Array;
Array ax;
ax.length_x = 10;
printArray(ax);

cs3157-spring2003-sklar-lect05 13� �

� �

structured data types (5) — arrays.

� array elements are accessed using the same syntax as in Java: array[index]

� C does not check whether array index values are sensible (i.e., no bounds checking)

� e.g., x[-1] or vec[10000] will not generate a compiler warning!

� if you’re lucky, the program crashes with

Segmentation fault (core dumped)

� C references arrays by the address of their first element:
array is equivalent to &array[0]

� you can iterate through arrays using pointers as well as indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

cs3157-spring2003-sklar-lect05 14� �

� �

structured data types (7) — 2D arrays.

� 2-dimensional arrays

int weekends[52][2];

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] ...

�

weekends

� you can use indices or pointer math to locate elements in the array

– weekends[0][1]

– weekends+1

� weekends[2][1] is same as *(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

cs3157-spring2003-sklar-lect05 15� �

� �

structured data types (8) — struct.
� struct is similar to a field in a Java object definition

� it’s a way of grouping multiple data types together

� components can be any type (but not recursive)

� accessed using the same syntax struct.field

int main() {
struct {

int x;
char y;
float z;

} rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main() */

cs3157-spring2003-sklar-lect05 16� �

� �

structured data types (9) — struct.

� variables of struct types can be declared in two ways:

– using a tag associated with the struct definition

– wrapping the struct definition inside a typedef

� example:

int main() {
struct record {

int x;
char y;
float z;

};
struct record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main()

cs3157-spring2003-sklar-lect05 17� �

� �

structured data types (10) — struct.

� another example:

int main() {
typedef struct {

int x;
char y;
float z;

} Record;
Record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);

} /* end of main()

cs3157-spring2003-sklar-lect05 18� �

� �

structured data types (11) — struct.

� overall size of struct is the sum of the elements, plus padding for alignment

� given previous 3 examples:
sizeof(rec) � 12

� but, it depends on the size and order of content (e.g., ints need to be aligned on word
boundaries, since size of char is 1 and size of int is 4):
struct {
char x;
int y;
char z;

} s1;
/* x y z */
/* |----|----|----| */
/* sizeof s1 -> 12 */

struct {
char x, y;
int z;

} s2;
/* xy z */
/* |----|----| */
/* sizeof s2 -> 8 */

cs3157-spring2003-sklar-lect05 19� �

� �

structured data types (12) — struct.
� pointers to structs are common — especially useful with functions (as arguments to

functions or as function type)

� two notations for accessing elements: (*sp).field or sp->field
(note: *sp.field doesn’t work)

struct xyz {
int x, y, z;
};
struct xyz s;
struct xyz *sp;
...
s.x = 1;
s.y = 2;
s.z = 3;
sp = &s;
(*sp).z = sp->x + sp->y;

cs3157-spring2003-sklar-lect05 20� �

� �

structured data types (13) — extended example p1.

#include <stdio.h>
#include <string.h>

#define NAME_LEN 40

struct person {
char name[NAME_LEN+1];
float height;
struct { /* nested structure */
int day;
int month;
int year;

} birthday;
};

void printPerson(struct person *); /* prototype */

cs3157-spring2003-sklar-lect05 21� �

� �

structured data types (14) — extended example p2.

int main(void) {
struct person suzanne; /* declare one */
struct person class[120]; /* declare an array */
/* store info in one */
strcpy(suzanne.name,"suzanne");
suzanne.height = 60;
suzanne.birthday.day = 16;
suzanne.birthday.month = 5;
suzanne.birthday.year = 1988;
/* store info in the array */
strcpy(class[0].name,"alex");
class[0].height = 48;
class[0].birthday.day = 9;
class[0].birthday.month = 5;
class[0].birthday.year = 1995;
strcpy(class[1].name,"jen");
class[1].height = 55;

cs3157-spring2003-sklar-lect05 22� �

� �

structured data types (15) — extended example p3.

class[1].birthday.day = 14;
class[1].birthday.month = 4;
class[1].birthday.year = 1992;
/* print them... */
printPerson(&suzanne);
printPerson(&class[0]);
printPerson(&class[1]);

} /* end of main() */

void printPerson(struct person *p) {
printf("name = [%s]\n",p->name);
printf("height = %5.2f inches\n",p->height);
printf("birthday = %02d/%02d/%4d\n",p->birthday.day,

p->birthday.month,p->birthday.year);
}

cs3157-spring2003-sklar-lect05 23� �

� �

structured data types (16) — union.
� union

� like struct:

union u_tag {
int ival;
float fval;
char *sval;

} u;

� but only one of ival, fval and sval can be used in an instance of u

� overall size is largest of elements

cs3157-spring2003-sklar-lect05 24� �

� �

functions (1).

� why?

– useful if a program is too long

– modularization — easier to code, debug, read, etc

– promotes code reuse

� how?

– passing arguments to functions

� by value

� by reference (pointer)

– returning values from functions

� by value

� by reference (pointer)

cs3157-spring2003-sklar-lect05 25� �

� �

functions (2).

� like methods in Java

� syntax:

<type> <name> (<arguments>) {
<declarations>
<statements>

} /* end of function */

� (replace all values in angle brackets with your definitions)

� the function name must be declared before it is called

� hence the use of function prototypes:

– put this first, at the top of the program file:

<type> <name> (<arguments>);

– then you can put the actual definition anywhere you want in the file

cs3157-spring2003-sklar-lect05 26� �

� �

functions (3) — prototypes.

� prototypes are function header declarations and act similarly to Java interfaces

� here’s a prototype to a function that is defined outside the file in which the prototype is
(hence extern):

extern int putchar(int c);

� here’s the function call:

putchar(’A’);

� here’s the function definition:

int putchar(int c) {
printf("%c",c);

} /* end of putchar() */

� if defined before call in same file, then you don’t need a prototype

� frequently, prototypes are defined in header (.h) file

� it’s also a good idea to include the header file in the file where the actual definition
resides — to ensure consistency

cs3157-spring2003-sklar-lect05 27� �

� �

functions (4) — example.

#include <stdio.h>

/* function prototype */
void printN7(int n);

/* here’s the main function */
int main(void) {
int n = 12345;
printN7(n); // function call

} // end of main()

/* function definition */
void printN7(int n) {
printf("%d\n", n*7);

} // end of printN7()

cs3157-spring2003-sklar-lect05 28� �

� �

functions (5).

� static functions and variables hide themselves from those outside the file in which
they are declared:

static int x;
static int times2(int c) {
return c*2;

}

� similar to protected class members in Java

cs3157-spring2003-sklar-lect05 29� �

� �

functions (6).

� const keyword

� indicates that an argument won’t be changed

� only meaningful for pointer arguments and declarations:

int myfunction(const char *s, const int x) {
const int VALUE = 10;
printf("x = %d\n", VALUE);
return *s;

}

� if you attempt to change *s or x or VALUE, you’ll get a compiler warning

cs3157-spring2003-sklar-lect05 30� �

� �

functions (7) — variable number of arguments.

� “overloading” functions not allowed in C (like it is in Java)

� closest approximation is allowing variable number of arguments

� e.g., printf()

� prototype syntax:

int printf(const char *format, ...);

� for example, first call has 2 arguments, and second call has 4 arguments:

printf("height = %5.2f inches\n",p->height);
printf("birthday = %02d/%02d/%4d\n",p->birthday.day,

p->birthday.month,p->birthday.year);

cs3157-spring2003-sklar-lect05 31� �

� �

functions (8) — variable number of arguments.

#include <stdarg.h>
/* example: computes and returns product of its arguments */
double product(int number, ...) {
va_list list;
double p;
int i;
va_start(list, number); /* 2nd arg is the name of the last

parameter before the variable
argument list */

p = 1.0;
for (i=0; i<number; i++) {
p *= va_arg(list, double);

}
va_end(list);
return p;

}

cs3157-spring2003-sklar-lect05 32� �

� �

functions (9) — variable number of arguments.

� limitations:

– need to copy to variables or local array

– cannot access arguments in middle (unless you copy them first)

– client and function need to know and adhere to type

� for more information: unix$ man va_start

cs3157-spring2003-sklar-lect05 33� �

� �

programs with multiple files (1).

� file #1: hw.c

#include <stdio.h> /* library header */
#include "mydefs.h" /* my header */
int main(void) {
myfunction(); /* my function */

}

� file #2: mydefs.c

#include <stdio.h>
#include "mydefs.h"
void myfunction(void) {
mydata = 19;

}

� file #3: mydefs.h

void myfunction(); /* prototype */
int mydata; /* global variable declaration */

cs3157-spring2003-sklar-lect05 34� �

� �

programs with multiple files (2).

� the include file is automatically included at compile time

� but you need to link the files together:

unix$ gcc -c hw.c -o hw.o
unix$ gcc -c mydefs.c -o mydefs.o
unix$ gcc hw.o mydefs.o -o hw

cs3157-spring2003-sklar-lect05 35� �

� �

extras (1) — copying strings.
� copying content vs. copying pointer to content

char s[1024];
char *t;

� saying t = s; copies the pointer, i.e., the address of s into t, so now they refer to the
same address (memory location)

� use strcpy(t,s); to copy the content of s to t

� BUT make sure you have enough memory allocated for t to store all of s

� saying s = "mydata"; is incorrect (though it may appear to work!)

� use strcpy(s, "mydata"); instead

cs3157-spring2003-sklar-lect05 36� �

� �

extras (2) — inside the string library.

� assumptions:

#include <string.h>

– strings are NULL-terminated

– all target arrays are large enough

� length function:

int strlen(const char *source);

– returns number of characters in source, excluding NULL

� copying functions:

char *strcpy(char *dest, char *source);

– copies characters from source array into dest array up to NULL

char *strncpy(char *dest, char *source, int num);

– copies characters from source array into dest array; stops after num characters (if
no NULL before that); appends NULL

cs3157-spring2003-sklar-lect05 37� �

� �

extras (3) — inside the string library.

� search functions:

char *strchr(const char *source, const char ch);

– returns pointer to first occurrence of ch in source; NULL if none

char *strstr(const char *source, const char *search);

– return pointer to first occurrence of search in source

cs3157-spring2003-sklar-lect05 38� �

� �

extras (4) — inside the string library.

� parsing function:

char *strtok(char *s1, const char *s2);

– breaks string s1 into a series of tokens, delimited by s2

– called the first time with s1 equal to the string you want to break up

– called subsequent times with NULL as the first argument

– each time is called, it returns the next token on the string

– returns null when no more tokens remain

char inputline[1024];
char *name, *rank, *serial_num;
printf("enter name+rank+serial number: ");
scanf("%s", inputline);
name = strtok(inputline,"+");
rank = strtok(null,"+");
serial_num = strtok(null,"+");

cs3157-spring2003-sklar-lect05 39� �

� �

extras (5) — inside the string library.
� formatting functions — using internal buffers:

int sscanf(char *string, char *format, ...)

– parse the contents of string according to format

– placed the parsed items into 3rd, 4th, 5th, ... argument

– return the number of successful conversions

int sprintf(char *buffer, char *format, ...)

– produce a string formatted according to format

– place this string into the buffer

– the 3rd, 4th, 5th, ... arguments are formatted

– return number of successful conversions

� format characters are like printf and scanf (see notes from earlier lectures)

cs3157-spring2003-sklar-lect05 40� �

� �

extras (6) — character I/O.

� stdio functions:

int getchar()

– read the next character from stdin; returns EOF if none

int fgetc(FILE *in)

– read the next character from FILE in; returns EOF if none

int putchar(int c)

– write the character c onto stdout; returns c or EOF

int fputc(int c, FILE *out)

– write the character c onto out; returns c or EOF

cs3157-spring2003-sklar-lect05 41� �

� �

extras (7) — line I/O.

� stdio functions:

char *fgets(char *buf, int size, FILE *in);

– read the next line from in into buffer buf

– halts at ’

�

n’ or after size-1 characters have been read

– the ’

�

n’ is read, but not included in buf

– returns pointer to strbuf if ok, NULL otherwise

– do not use gets(char *) - buffer overflow

int fputs(const char *str, FILE *out);

– writes the string str to out, stopping at ’

�

0’

– returns number of characters written or EOF

cs3157-spring2003-sklar-lect05 42� �

� �

extras (8) — command-line arguments.

� how to get arguments from the unix command-line into the main program:

int main(int argc, char argv[]) {
...
}

� argc is the argument count

� argv is the argument vector

– array of strings with command-line arguments

– argv[0] is the program executable name (unlike Java!)

– argv[1] is the first argument

cs3157-spring2003-sklar-lect05 43� �

� �

extras (9) — command-line arguments.
� example:

– if you call:
unix$ myprogram a bc 123

– then inside main() the values are:
argc � 4
argv[0] � "myprogram"
argv[1] � "a"
argv[2] � "bc"
argv[3] � "123"

– if you want to use them as numbers, you have to convert from string to numeric (just
like in Java)!
int n;
sscanf(argv[3],"%d",&n);

cs3157-spring2003-sklar-lect05 44� �

� �

extras (10) — void.

� void and void *

� function that doesn’t return anything declared as void

� a function that takes no arguments has a void argument list, e.g.:
int main(void) { ... }

� the special pointer void * can point to anything:

#include <stdio.h>
extern void *f(void);

int main(void) {
f();

}

void *f(void) {
printf("the big void\n");
return NULL;

}

cs3157-spring2003-sklar-lect05 45� �

� �

extras (11) — function pointers.

� in this way you can define “function pointers”

� then you can “override” functions by leaving a prototype and changing the function
based on the implementation

� syntax:

returnType (*ptrName)(arg1, arg2, ...);

� examples:

int (*fp)(double x);

– is a pointer to a function that return an integer

double *(*gp)(int y);

– is a pointer to a function that returns a pointer to a double

cs3157-spring2003-sklar-lect05 46� �

� �

extras (12) — function pointers.

� a function that returns an integer:

int myfunction();

� a function that returns a pointer to an integer:

int *myfunction();

� a pointer to a function that returns an integer:

int (*myfunction)();

� a pointer to a function that returns a pointer to an integer:

int *(*myfunction)();

cs3157-spring2003-sklar-lect05 47� �

� �

extras (13) — function pointers.

#include <stdio.h>

void myfunction(int d);
void mycaller(void (*f)(int), int arg);

int main(void) {
myfunction(10); /* call myfunction with argument = 10 */
mycaller(myfunction,10); /* do the same thing! */

}

void mycaller(void (*f)(int), int arg) {
(*f)(arg);

}

void myfunction(int d) {
printf("d=%d\n",d);

}

cs3157-spring2003-sklar-lect05 48� �

� �

extras (14) — printing escape sequences.

� start with a backslash (

�

)

� examples:

�

n new line

�

t tab

�

a alert (rings the bell)

�

” print a double quote (”)

� �

print a backslash (

�

)

cs3157-spring2003-sklar-lect05 49� �

� �

some last words on C...

� always initialize anything before using it (especially pointers)

� don’t use pointers after freeing them

� don’t return a function’s local variables by reference

� there is no built-in exception handling! — so check for errors everywhere

� be CAREFUL about memory allocation

� Murphy’s law, C version: anything that can’t fail, will fail

cs3157-spring2003-sklar-lect05 50� �

