
cs3157 lecture #7 notes.

mon 3 mar 2003

http://www.cs.columbia.edu/˜cs3157

� news

– homework #2 is due next monday (10 mar)

� today’s topic

– perl

cs3157-spring2003-sklar-lect07 1

perl — history.
� written by Larry Wall

� designed to produce reports for a bug reporting system

� created on and developed for Unix, but Windows and Mac versions also exist

� intended to be a useful language

� see http://www.perl.com

– you can download perl from there

– and find documentation, etc.

� perl5 has more stuff in it, e.g.:

– option to compile perl into C

– threads

� but we’ll just cover basic perl

cs3157-spring2003-sklar-lect07 2

perl — basics.
� first line of file is

#!/usr/bin/perl

� this is the path to the perl executable

� if it doesn’t work, then do which perl to find out where perl is installed on your
system

� the perl executable runs the perl interpreter, to interpret and execute your perl script

� the interpreter converts script to bytecode prior to execution, so it is sort of like a
compiler (although bytecode is not stored anywhere)

� make the script executable (chmod +x <filename>), like your shell scripts from
last week

cs3157-spring2003-sklar-lect07 3

perl — program structure.
� whitespace

– only needed to separate terms

– all whitespace (spaces, tabs, newlines) is the same

� semicolons

– every simple statement must end with one

– except compound statements enclosed in braces (i.e., no semicolon needed after the
brace)

– except final statements within braces

� declarations

– only subroutines and report formats need explicit declarations

– otherwise, variables in perl are like in shell scripts — they are declared and initialized
all at once

� comments

– from hash (#) to end of line

cs3157-spring2003-sklar-lect07 4

perl — data types and variables.
� three basic data types:

– scalars

– arrays

– hashes

cs3157-spring2003-sklar-lect07 5

perl — variables.
� first letter indicates its type:

– $ — scalar

– @ — array

– % — hash (key/value pair)

� names consist of letters, digits, underscores; up to 255 chars

� case sensitive

� should start with a letter or underscore (otherwise wierd rules apply)

� uninitialized variables have value undef

cs3157-spring2003-sklar-lect07 6

perl — scalars.
� begin with $

� numbers

– integers

– floating point

– e.g., 123, -456, 0xff, 3.14, 4_567

� strings

– delimited by single or double quotes

– e.g, "123", "abc", ’alphabet’

cs3157-spring2003-sklar-lect07 7

perl — arrays.
� begin with @

� ordered list of scalar values

� e.g.: @fruit = ("apple", "orange", "pear");

� refer to single element using $ in front of name (in place of @) and index of element in
square brackets

� e.g.: $fruit[0] is "apple"

� negative subscripts count backwards from the last element;
-1 is the last element in the list

cs3157-spring2003-sklar-lect07 8

perl — hashes.
� begin with %

� name/value pair

� e.g.: %fruit = ("apples", 3, "oranges", 7, "pears", 6);

� pick out one by referring to its name

� e.g.: $fruit{"apples"} is 3

� you can also define like this:

%fruit = {
apples => 3,
oranges => 7,
pears => 6

};

cs3157-spring2003-sklar-lect07 9

perl — contexts.
� operations happen in one of two contexts:

– scalar

– list

� some operators return scalars and some return lists

� some can return either, depending on the context

� two examples...

cs3157-spring2003-sklar-lect07 10

perl — contexts, example 1.
� example:

#!/usr/bin/perl

($sec,$min,$hr,$mday,$mon,$yr,$wday,$yday,$isdst) = localtime();
print "s=",$sec," min=",$min," hr=",$hr," mday=",$mday,
" mon=",$mon," yr=",$yr," wday=",$wday,
" yday=",$yday," isdst=",$isdst,"\n";

$today = localtime();
print "today=",$today,"\n";

� output:

s=31 min=29 hr=21 mday=2 mon=2 yr=103 wday=0 yday=60 isdst=0
today=Sun Mar 2 21:29:31 2003

cs3157-spring2003-sklar-lect07 11

perl — contexts, example 2.
� example

#!/usr/bin/perl

$a = (2,4,6,8);
print ’$a=’,$a,"\n";

@b = (2,4,6,8);
print ’@b=’,@b,"\n";

$a = @b;
print ’$a=’,$a,"\n";

� output

$a=8
@b=2468
$a=4

cs3157-spring2003-sklar-lect07 12

perl — statements.
� simple statements are expressions that get evaluated

� they end with a semicolon (;)

� a sequence of statements can be contained in a block, delimited by braces ({ and })

� the last statement in a block does not need a semicolon

� blocks can be given labels:

myblock: {
print "hello world\n";

}

cs3157-spring2003-sklar-lect07 13

perl — conditionals.
� three forms

� simple if

if (expression) {block} else {block}

� unless

unless (expression) {block} else {block}

� compound if

if (expression1) {block}
elsif (expression2) {block}
...
elsif (expressionN) {block}
else {block}

cs3157-spring2003-sklar-lect07 14

perl — conditionals, example.

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

if ($a > 0) { print "a is greater than 0!\n" }
else { print "a is NOT greater than 0!\n" }

unless ($a > 0) { print "a is NOT greater than 0!\n" }
else { print "a is greater than 0!\n" }

if ($a > 0) { print "a is greater than 0!\n" }
elsif ($a < 0) { print "a is less than 0!\n" }
else { print "a is exactly 0!\n" }

cs3157-spring2003-sklar-lect07 15

perl — loops.
� while

� for

� foreach

cs3157-spring2003-sklar-lect07 16

perl — while loops.
� syntax:

while (expression) {block}

� example

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

$i=0;
while ($i < $a) {

print "i=",$i," b[i]=",$b[$i],"\n";
$i++;

}

cs3157-spring2003-sklar-lect07 17

perl — for loops.
� syntax:

for (expression1; expression2; expression3) {block}

� example:

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

for ($i=0; $i<$a; $i++) {
print "i=",$i," b[i]=",$b[$i],"\n";

}

cs3157-spring2003-sklar-lect07 18

perl — foreach loops.
� syntax:

foreach var (list) {block}

� example:

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

foreach $e (@b) {
print "e=",$e,"\n";

}

cs3157-spring2003-sklar-lect07 19

perl — modifiers.
� you can follow a simple statement by an if, unless, while or until modifier:

statement if expression;
statement unless expression;
statement while expression;
statement until expression;

� example:

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

print "hello world!\n" if ($a < 10);
print "hello world!\n" unless ($a < 10);
#print "hello world!\n" while ($a < 10);
print "hello world!\n" until ($a < 10);

cs3157-spring2003-sklar-lect07 20

perl — special variables.
� there’s a (long) list of global special variables...

� a few important ones:

� $_ = default input and pattern-searching string

� example:

#!/usr/bin/perl

@b = (2,4,6,8);
$a = @b;

foreach (@b) {
print $_,"\n";

}

cs3157-spring2003-sklar-lect07 21

perl — other global special variables.
� there are lots of shortcuts; here are some (note that some also have an “English”

equivalent, if you load in a special perl module):

� $/ = input record separator (default is newline)

� $$ = process id of the perl process running the script

� $< = real user id of the process running the script

� $0 = (0=zero) name of the perl script

� @ARGV = list of command-line arguments

� %ENV = hash containing current environment

� STDIN = standard input

� STDOUT = standard output

� STDERR = standard error

cs3157-spring2003-sklar-lect07 22

perl — operators.
� unary:

! : logical negation
- : arithmetic negation
˜ : bitwise negation

� arithmetic
+,-,*,/,% : as you would expect
** : exponentiation

� relational
>, <=, <=, <= : as you would expect

� equality
==, != : as you would expect
<=> : comparison, with signed result:

– returns -1 if the left operand is less than the right;

– returns 0 if they are equal;

– returns +1 if the left operand is greater than the right

cs3157-spring2003-sklar-lect07 23

perl — more operators.
� assignment, increment, decrement

=
+=, ++
-=, --
*=, **=, /=, %=
&&=, ||=

� just like in C

cs3157-spring2003-sklar-lect07 24

perl — regular expressions.
� simplest regular expression is a literal string

� complex regular expressions use metacharacters to describe various options in building a
pattern... “I never metacharacter I didn’t like”

� metacharacters:
\ escapes the character immediately following it
. matches any single character except newline
ˆ matches at the beginning of a string
$ matches at the end of a string
* matches the preceding element 0 or more times
+ matches the preceding element 1 or more times
? matches the preceding element 0 or 1 times
{ ... } specifies a range of occurrences for the element preceding it
[...] matches any one of the class of characters in the brackets
(...) groups expressions
| matches either the expression before or after it

note that there are some exceptions to these rules

cs3157-spring2003-sklar-lect07 25

perl — pattern matching.
� =˜ binds a scalar to a patterm match, substitution or translation

� !˜ just like above, except that the return value is negated in the logical sense

� operators:

– m/pattern/gimosx : match

� g = match globally (all instances)

� i = do case insensitive matching

� note that first m is optional

– s/pattern/replacement/egimosx : search

� e = evaluate right side as an expression

� g = match globally (all instances)

� i = do case insensitive matching

– y/pattern1/pattern2/cds : translate

� c = complement pattern1

� d = delete found but unreplaced characters

� s = squash duplicate replaced characters

cs3157-spring2003-sklar-lect07 26

perl — pattern matching, example 1.
� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

if ($s =˜ m/x/) { print "there’s an x in ",$s,"\n" }
else { print "there isn’t\n" }

if ($s =˜ m/L/i) { print "there’s an l in ",$s,"\n" }
else { print "there isn’t\n" }

� output:

$s=[hello world]
there isn’t
there’s an l in hello world

cs3157-spring2003-sklar-lect07 27

perl — pattern matching, example 2.
� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

$t = ($s =˜ s/l/x/g);
print ’$t=[’,$t,"]\n";
print ’$s=[’,$s,"]\n";

� output:

$s=[hello world]
$t=[3]
$s=[hexxo worxd]

cs3157-spring2003-sklar-lect07 28

perl — pattern matching, example 3.
� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

$u = ($s =˜ y/l/o/c);
print ’$u=[’,$u,"]\n";
print ’$s=[’,$s,"]\n";

� output:

$s=[hello world]
$u=[8]
$s=[oollooooolo]

cs3157-spring2003-sklar-lect07 29

perl — subroutines.
� syntax for defining:

sub name {block}
sub name (proto) {block}

� where proto is like a prototype, where you put in sample arguments

� syntax for calling:

name(args);
name args;

� any arguments passed to a subroutine come in as the array @_

� you can use the return statement, like in C

cs3157-spring2003-sklar-lect07 30

perl — files, aka filehandles.
� open(FILEHANDLE, filename); : to open a file for reading

open(FILEHANDLE, >filename); : to open a file for writing
open(FILEHANDLE, >>filename); : to open a file for appending

� use || warn print "message"; or || die print "message"; for
error checking

� print FILEHANDLE, ...;

� close(FILEHANDLE);

� example:

#!/usr/bin/perl

open(MYFILE,">a.dat");
print MYFILE "hi there!\n";
print MYFILE "bye-bye\n";
close(MYFILE);

cs3157-spring2003-sklar-lect07 31

perl — filehandles, another example.

#!/usr/bin/perl

open(MYFILE2,"b.dat") || warn "file not found!";
open(MYFILE2,"a.dat") || die "file not found!";
while (<MYFILE2>) { print "$_\n" }
close(MYFILE2);

cs3157-spring2003-sklar-lect07 32

perl — built-in functions.
� here are a few:

� chomp $var
chomp @list
removes any line-ending characters

� chop $var
chop @list
removes last character

� chr number
returns the character represented by the ASCII value number

� eof filehandle
returns true if next read on filehandle will return end-of-file

� exists $hash{$key}
returns true if specified hash key exists, even if its value is undefined

� exit
exits the perl process immediately

cs3157-spring2003-sklar-lect07 33

� getc filehandle
reads next byte from filehandle

� index string, substr [, start]
returns position of first occurrence of substr in string, with optional starting position; also
rindex which is index in reverse

� opendir dirhandle, dirname
opens a directory for processing, kind of like a file; use readdir and closedir to
process

� split /pattern/, string [, limit]
splits string into a list of substrings, by finding delimiters that match pattern;
example: split /([-,])/,"1-10,20"; returns (1, ’-’, 10, ’,’, 20)

� substr string, pos [, n, replacement]
returns substring in string starting with position pos, for n characters

cs3157-spring2003-sklar-lect07 34

perl — etc.
� there are lots and lots of advanced and funky things you can do in perl; this is just a start!

� here’s a quick start reference:
http://www.comp.leeds.ac.uk/Perl/

� the main perl page is:
http://www.perl.com

� documentation is here (linked from above):
http://www.perl.com

� function reference list is here:
http://www.perldoc.com/perl5.6/pod/perlfunc.html

cs3157-spring2003-sklar-lect07 35

