
� �

cs3157 lecture #8 notes.

mon 10 mar 2003

http://www.cs.columbia.edu/˜cs3157

� news

– homework #2 is due today

– homework #3 will be posted today

� today’s topic

– unix processes

– threads

– sockets

cs3157-spring2003-sklar-lect08 1� �

� �

what is a process? (1).

� fundamental to almost all operating systems

� it’s a program in execution

� usually has its own address space

� also has

– program counter (PC)

– stack pointer (SP)

– hardware registers

cs3157-spring2003-sklar-lect08 2� �

� �

what is a process? (2).

� simple computer: one program, never stops

� timesharing system: alternates between processes, interrupted by OS

– runs on CPU

– clock interrupt happens

– saves process state

� registers (PC, SP, numeric)

� memory map

� memory (core image) � possibly swapped to disk

� � process table

– continues some other process

cs3157-spring2003-sklar-lect08 3� �

� �

process relationships.
� process tree structure is hierarchical (i.e., parent and child processes)

� children inherit properties from parent

� processes can:

– terminate

– request more (virtual) memory

– wait for a child process to terminate

– overlay program with different one

– send messages to other processes

cs3157-spring2003-sklar-lect08 4� �

� �

processes.

� in reality, each CPU can only run one program at a time

� but it appears to the user that many people are getting short (˜10-100 ms) time slices

– pseudo-parallelism � multiprogramming

– modeled as sequential processes

– context switch happens when CPU goes from one process to another

cs3157-spring2003-sklar-lect08 5� �

� �

process creation.

� processes are created:

– at system initialization

– by another process

– by user request (from shell)

– by a batch job (timed, Unix at or chron)

� foreground processes interact with user

� background processes don’t (also called daemons)

cs3157-spring2003-sklar-lect08 6� �

� �

unix processes — example (1).

� the ps command gives you information on the processes that are currently running (in
unix)

unix$ ps -ef
UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Mar 31 ? 0:17 sched
root 1 0 0 Mar 31 ? 0:09 /etc/init -
root 2 0 0 Mar 31 ? 0:00 pageout
root 3 0 0 Mar 31 ? 54:35 fsflush
root 334 1 0 Mar 31 ? 0:00 /usr/lib/saf/sac -t 300
root 24695 1 0 19:38:45 console 0:00 /usr/lib/saf/ttymon
root 132 1 0 Mar 31 ? 1:57 /usr/local/sbin/sshd
root 178 1 0 Mar 31 ? 0:01 /usr/sbin/inetd -s

daemon 99 1 0 Mar 31 ? 0:00 /sbin/lpd
root 139 1 0 Mar 31 ? 0:37 /usr/sbin/rpcbind
root 119 1 0 Mar 31 ? 0:06 /usr/sbin/in.rdisc -s
root 142 1 0 Mar 31 ? 0:00 /usr/sbin/keyserv

cs3157-spring2003-sklar-lect08 7� �

� �

unix processes — example (2).
� process 0 — process scheduler (“swapper”) system process

� process 1 — init process, invoked after bootstrap (/sbin/init)

� unix ps command is like the windows task manager

– options:
-e = select all processes
-a = select all with a tty except session leaders
-f = show full listing
-u = select by effective user ID (e.g., to see your processes)

– and many more

– try “man ps” for the complete list

cs3157-spring2003-sklar-lect08 8� �

� �

user identities.

� who we really are: real user and group ID

– taken from /etc/passwd file:
eis2003:asvy735:95548:316:ELIZABETH I SKLAR,,,:/u/3/e/eis2003:/bin/bash

� a few commands to try:

bash# who
galil pts/11 Mar 5 10:25 (dynamic-72-230.dyn.columbia.edu)
cs3157 pts/7 Mar 9 22:41 (miles.cs.columbia.edu)
dennis pts/12 Feb 20 16:23 (gomel.cs.columbia.edu)
cs3101 pts/14 Mar 5 12:02 (miles.cs.columbia.edu)

bash# whoami
cs3157

bash# who am i
cs3157 pts/7 Mar 9 22:41 (miles.cs.columbia.edu)

bash# id
uid=8420(cs3157) gid=98(guest)

bash# groups
guest

cs3157-spring2003-sklar-lect08 9� �

� �

file permissions.

� unix C function: chmod

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

S ISUID 04000 set user ID on execution
S ISGID 02000 set group ID on execution
S ISVTX 01000 sticky bit
S IRUSR 00400 read by owner
S IWUSR 00200 write by owner
S IXUSR 00100 execute/search by owner
S IRGRP 00040 read by group
S IWGRP 00020 write by group
S IXGRP 00010 execute/search by group
S IROTH 00004 read by others
S IWOTH 00002 write by others
S IXOTH 00001 execute/search by others

� or at unix prompt:
bash# chmod 777 hw1.java

cs3157-spring2003-sklar-lect08 10� �

� �

process identifiers.

� get process ID of current or parent process
pid t getpid(void);
pid t getppid(void);

� get real or effective group ID of current process (i.e., real corresponds to ID of calling
process and effective corresponds to set ID bit of file being executed)
gid t getgid(void);
uid t getegid(void);

� get real or effective user ID of the current process (i.e., real corresponds to ID of calling
process and effective corresponds to set ID bit of file being executed)
uid t getuid(void);
uid t geteuid(void);

� all of the above require the following include files:
#include <sys/types.h>
#include <unistd.h>

cs3157-spring2003-sklar-lect08 11� �

� �

unix process creation: forking.
� fork() creates a child process

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

� differs from parent in PID and PPID

� file locks are not inherited

� signals are not inherited

� function call returns 0 to child, PID of child to parent

� returns -1 (to parent) if there is an error

cs3157-spring2003-sklar-lect08 12� �

� �

unix process creation: forking example.

#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
extern int errno;
pid_t fork(void);
int v = 42;
if ((pid = fork()) < 0) {
printf("error in fork: %s\n",strerror(errno));
exit(1);

}
else if (pid == 0) { /* inside the child! */
printf("child %d of parent %d\n", getpid(), getppid());
...

}
else ... /* inside the parent */

cs3157-spring2003-sklar-lect08 13� �

� �

using errno.

� many unix C system calls use the errno value

� inside your program, do the following:

#include <errno.h>
extern int errno;

� then you will have access to this value which is set by various system functions (like
fork())

� errno is set to indicate something descriptive (other than -1, which is often the return
value)

� use char *strerror(int errno); to turn the numeric error message into a
text description

� you need to #include <string.h> to use this

cs3157-spring2003-sklar-lect08 14� �

� �

process properties inherited.

� user and group ids

� process group id

� controlling terminal

� setuid flag

� current working directory

� root directory (chroot)

� file creation mask

� signal masks

� close-on-exec flag

� environment

� shared memory

� resource limits

cs3157-spring2003-sklar-lect08 15� �

� �

waiting for a child to terminate.
� two functions:

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

� where

pid is

� �

specific process

� �

any child with some process group id

� �
�

any child process

� �

any child with PID = abs(pid)
status = if not null, location to store status information
options = OR of zero or more of the following constants:
WNOHANG to return immediately if no child has exited
WUNTRACED to also return for children which are stopped and whose status has not

been reported

cs3157-spring2003-sklar-lect08 16� �

� �

waiting for a child to terminate – example.

� asynchronous event

� SIGCHLD signal

� process can block waiting for child termination

pid = fork();
...
if (wait(&status) != pid) {
// something’s wrong

}

cs3157-spring2003-sklar-lect08 17� �

� �

race conditions.

� race = shared data and outcome depends on the order in which processes run

� e.g., parent or child runs first?

� waiting for parent to terminate

� generally, need some signaling mechanism

cs3157-spring2003-sklar-lect08 18� �

� �

exec: running another program.

� replace current process by new program

– text, data, heap, stack

� multiple ways of calling exec:

#include <unistd.h>
int execl(const char *path, const char *arg0, ...,

const char *argn, char * /*NULL*/);
int execv(const char *path, char *const argv[]);
int execle(const char *path,char *const arg0[], ... ,

const char *argn, char * /*NULL*/,
char *const envp[]);

int execve(const char *path, char *const argv[],
char *const envp[]);

int execlp(const char *file, const char *arg0, ...,
const char *argn, char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

� file: absolute (fully qualified) path or one of the $PATH entries

cs3157-spring2003-sklar-lect08 19� �

� �

exec example.

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main(void) {
pid_t pid;
if ((pid = fork()) < 0) perror("fork error");
else if (pid == 0) {
if (execle("echoall", "echoall", "myarg1",

"MY ARG2", NULL, env_init) < 0)
perror("exec");

}
if (waitpid(pid, NULL, 0) < 0) perror("wait error");
printf("child done\n");
exit(0);

}

cs3157-spring2003-sklar-lect08 20� �

� �

another alternative: use system() to execute a command.

#include <stdlib.h>
int system(const char *string);

� invokes command string from program

� e.g., system("date > file");

� handled by shell (/usr/bin/sh)

cs3157-spring2003-sklar-lect08 21� �

� �

threads.

� process: address space + single thread of control

� sometimes want multiple threads of control (flow) in same address space

� quasi-parallel

� threads separate resource grouping and execution

� thread: program counter, registers, stack

� also called lightweight processes

� multithreading: avoid blocking when waiting for resources

– multiple services running in parallel

� state: running, blocked, ready, terminated

cs3157-spring2003-sklar-lect08 22� �

� �

why threads?

� parallel execution

� shared resources � faster communication without serialization

� easier to create and destroy than processes

� useful if some are I/O-bound � overlap computation and I/O

� easy porting to multiple CPUs

cs3157-spring2003-sklar-lect08 23� �

� �

thread variants.
� POSIX (pthreads)

� Sun threads (mostly obsolete)

� Java threads

cs3157-spring2003-sklar-lect08 24� �

� �

thread functions (1).

� to create a new thread of control:

#include <pthread.h>
int pthread_create(pthread_t *tid,

const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg);

� where
tid = identifier of new thread
start_routine = function that thread calls when it first starts, using arg as its first
argument
attr = thread attributes (=NULL for default)

� returns 0 if call is successful; non-zero otherwise

� default thread attributes: joinable (not detached) and has non-real-time scheduling policy

� see pthread_attr_init() for more on attributes

cs3157-spring2003-sklar-lect08 25� �

� �

thread functions (2).

� thread terminates using:
void pthread_exit(void *retval);

� where
retval is the return value of the thread

� this function never returns!

cs3157-spring2003-sklar-lect08 26� �

� �

thread synchronization.

� mutual exclusion, locks: mutex

– protect shared or global data structures

� synchronization: condition variables

� semaphores

cs3157-spring2003-sklar-lect08 27� �

� �

sockets (1).
� the client server model

– used by most interprocess communication (i.e., two processes which will be
communicating with each other)

– one of the two processes, the client, connects to the other process, the server,
typically to make a request for information

– e.g., a person who makes a phone call to another person

� the client needs to know of the existence of and the address of the server

� but the server does not need to know the address of the client before the connection is
established, or even that the client exists

� once a connection is established, both sides can send and receive information

cs3157-spring2003-sklar-lect08 28� �

� �

sockets (2).

� implementation

� system calls for establishing a connection are somewhat different for the client and the
server, but both involve the basic construct of a socket

� a socket is one end of an interprocess communication channel

� the two processes each establish their own socket

� e.g., each person in a phone call needs to have a phone

cs3157-spring2003-sklar-lect08 29� �

� �

sockets (3).

� establishing a server side socket

� five steps:

1. create a socket with the socket() system call

2. bind the socket to an address using the bind() system call

– for a server socket on the Internet, an address consists of a port number on the
host machine

3. listen for connections with the listen() system call

4. accept a connection with the accept() system call

5. send and receive data, using the read() and write() system calls

cs3157-spring2003-sklar-lect08 30� �

� �

sockets (4).

� establishing a client side socket

� three steps:

1. create a socket with the socket() system call

2. connect the socket to the address of the server using the connect() system call

3. send and receive data, using the read() and write() system calls

cs3157-spring2003-sklar-lect08 31� �

� �

socket types (1).
� when creating a socket, you need to specify

– address domain

– socket type

� two widely used address domains:

– unix domain

– Internet domain

� each has its own address format

cs3157-spring2003-sklar-lect08 32� �

� �

socket types (2).

� unix domain sockets

– communication between two processes that share a common file system

– address is a character string which is basically an entry in the file system

� Internet domain sockets

– communication between two processes on the Internet

– address consists of:

� Internet address of the host machine
(every computer on the Internet has a unique 32-bit address, often referred to as its
IP address)

� port number (16-bit unsigned integers; the lower numbers are reserved in unix for
standard services; generally, port numbers above 2000 are available)

cs3157-spring2003-sklar-lect08 33� �

� �

socket types (3).

� two widely used socket types:

– stream sockets

– datagram sockets

� stream sockets:

– communication is a continuous stream of characters

– communications protocol = TCP (Transmission Control Protocol)

� datagram sockets:

– read entire messages at once

– communications protocol = UDP (Unix Datagram Protocol)
(unreliable and message oriented)

� so we’ll stick with TCP...

cs3157-spring2003-sklar-lect08 34� �

� �

references.

� you can execute the unix man command on all of the unix C functions described herein

� http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

cs3157-spring2003-sklar-lect08 35� �

