
� �

cs3157 lecture #10 notes.

mon 31 mar 2003

http://www.cs.columbia.edu/˜cs3157

� news

– homework #3 due today

� today

– software engineering

– UML

� reference

– today’s notes thanks to Janak Parekh and Phil Gross

cs3157-spring2003-sklar-lect10 1� �

� �

software engineering: what is it?

� Stephen Schach: “Software engineering is a discipline whose aim is the production of
fault-free software, delivered on time and within budget, that satisfies the user’s needs.”

� includes:

– requirements analysis

– human factors

– functional specification

– software architecture

– design methods

– programming for reliability

– programming for maintainability

– team programming methods

– testing methods

– configuration management

cs3157-spring2003-sklar-lect10 2� �

� �

software engineering: why?

� in school, you learn the mechanics of programming

� you are given the specifications

� you know that it is possible to write the specified program in the time allotted

� but not so in the real world...

– what if the specifications are not possible?

– what if the time frame is not realistic?

– what if you had to write a program that would last for 10 years?

� in the real world:

– software is usually late, overbudget and broken

– software usually lasts longer than employees or hardware

� the real world is cruel and software is fundamentally brittle

cs3157-spring2003-sklar-lect10 3� �

� �

software engineering: who?
� the average manager has no idea how software needs to be implemented

� the average customer says: “build me a system to do X”

� the average layperson thinks software can do anything (or nothing)

� most software ends up being used in very different ways than how it was designed to be
used

cs3157-spring2003-sklar-lect10 4� �

� �

software engineering: time.

� you never have enough time

� software is often underbudgeted

� the marketing department always wants it tomorrow

� even though they don’t know how long it will take to write it and test it

� “Why can’t you add feature X? It seems so simple...”

� “I thought it would take a week...”

� “We’ve got to get it out next week. Hire 5 more programmers...”

cs3157-spring2003-sklar-lect10 5� �

� �

software engineering: people.

� you can’t do everything yourself

� e.g., your assignment: “write an operating system”

� where do you start?

� what do you need to write?

� do you know how to write a device driver?

� do you know what a device driver is?

� should you integrate a browser into your operating system?

� how do you know if it’s working?

cs3157-spring2003-sklar-lect10 6� �

� �

software engineering: complexity.

� software is complex!

� or it becomes that way

– feature bloat

– patching

� e.g., the evolution of Windows NT

– NT 3.1 had 6,000,000 lines of code

– NT 3.5 had 9,000,000

– NT 4.0 had 16,000,000

– Windows 2000 has 30-60 million

– Windows XP has at least 45 million...

cs3157-spring2003-sklar-lect10 7� �

� �

software engineering: necessity.
� you will need these skills!

� risks of faulty software include

– loss of money

– loss of job

– loss of equipment

– loss of life

cs3157-spring2003-sklar-lect10 8� �

� �

examples: therac-25 (1).

� http://sunnyday.mit.edu/papers/therac.pdf

� therac-25 was a linear accelerator released in 1982 for cancer treatment by releasing
limited doses of radiation

� it was software-controlled as opposed to hardware-controlled (previous versions of the
equipment were hardward-controlled)

� it was controlled by a PDP-11; software controlled safety

� in case of error, software was designed to prevent harmful effects

cs3157-spring2003-sklar-lect10 9� �

� �

examples: therac-25 (2).

� BUT

� in case of software error, cryptic codes were displayed to the operator, such as:
“MALFUNCTION xx”
where

� � � � � � �

� operators became insensitive to these cryptic codes

� they thought it was impossible to overdose a patient

� however, from 1985-1987, six patients received massive overdoses of radiation and
several died

cs3157-spring2003-sklar-lect10 10� �

� �

examples: therac-25 (3).

� main cause:

� a race condition often happened when operators entered data quickly, then hit the
up-arrow key to correct the data and the values were not reset properly

� the manufacturing company never tested quick data entry — their testers weren’t that
fast since they didn’t do data entry on a daily basis

� apparently the problem had existed on earlier models, but a hardware interlock
mechanism prevented the software race condition from occurring

� in this version, they took out the hardware interlock mechanism because they trusted the
software

cs3157-spring2003-sklar-lect10 11� �

� �

examples: ariane 501 (1).
� next-generation launch vehicle, after ariane 4

� presigious project for ESA

� maiden flight: june 4, 1996

� inertial reference system (IRS), written in ada

– computed position, velocity, acceleration

– dual redundancy

– calibrated on launch pad

– relibration routine runs after launch (active but not used)

� one step in recalibration converted floating point value of horizontal velocity to integer

� ada automatically throws out of bounds exception if data conversion is out of bounds

� if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

cs3157-spring2003-sklar-lect10 12� �

� �

examples: ariane 501 (2).

� perfect launch

� ariane 501 flies much faster than ariane 4

� horizontal velocity component goes out of bounds

� IRS in both main and redundant systems go into diagnostic mode

� control system receives diagnotic data but interprets it as wierd position data

� attempts to correct it...

� ka-boom!

� failure at altitiude of 2.5 miles

� 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid propellant

cs3157-spring2003-sklar-lect10 13� �

� �

examples: ariane 501 (3).

� expensive failure:

– ten years

– $7 billion

� horizontal velocity conversion was deliberately left unchecked

� who is to blame?

� “mistakes were made”

� software had never been tested with actual flight parameters

� problem was easily reproduced in simulation, after the fact

cs3157-spring2003-sklar-lect10 14� �

� �

the mythical man-month.

� Fred Brooks (1975)

� book written after his experiences in the OS/360 design

� major themes:

– Brooks’ Law: “Adding manpower to a late software project makes it later.”

– the “black hole” of large project design: getting stuck and getting out

– organizing large team projects and communication

– documentation!!!

– when to keep code; when to throw code away

– dealing with limited machine resources

� most are supplemented with practical experience

cs3157-spring2003-sklar-lect10 15� �

� �

no silver bullet.
� paper written in 1986 (Brooks)

� “There is no single development, in either technology or management technique, which
by itself promises even one order-of magnitude improvement within a decade of
productivity, in reliability, in simplicity.”

� why? software is inherently complex

� lots of people disagree(d), but there is no proof of a counter-argument

� Brooks’ point: there is no revolution, but there is evolution when it comes to software
development

cs3157-spring2003-sklar-lect10 16� �

� �

mechanics.

� well-established techniques and methodologies:

– team structures

– software lifecycle / waterfall model

– cost and complexity planning / estimation

– reusability, portability, interoperability, scalability

– UML, design patterns

cs3157-spring2003-sklar-lect10 17� �

� �

team structures.

� why Brooks’ Law?

– training time

– increased communications: pairs grow by �
�

while people/work grows by �

– how to divide software? this is not task sharing

� types of teams

– democratic

– “chief programmer”

– synchronize-and-stabilize teams

– eXtreme Programming teams

cs3157-spring2003-sklar-lect10 18� �

� �

lifecycles.

� software is not a build-one-and-throw-away process

� that’s far too expensive

� so software has a lifecycle

� we need to implement a process so that software is maintained correctly

� examples:

– build-and-fix

– waterfall

cs3157-spring2003-sklar-lect10 19� �

� �

software lifecycle model.
� 7 basic phases (Schach):

– requirements (2%)

– specification/analysis (5%)

– design (6%)

– implementation (module coding and testing) (12%)

– integration (8%)

– maintenance (67%)

– retirement

� percentages in ()’s are average cost of each task during 1976-1981

� testing and documention should occur throughout each phase

� note which is the most expensive!

cs3157-spring2003-sklar-lect10 20� �

� �

requirements phase.

� what are we doing, and why?

� need to determine what the client needs, not what the client wants or thinks they need

� worse — requirements are a moving target!

� common ways of building requirements include:

– prototyping

– natural-language requirements document

� use interviews to get information (not easy!)

cs3157-spring2003-sklar-lect10 21� �

� �

today’s example.

� Metro: “I want a kiosk thingy that helps people get between station A and station B.”

� what are the requirements?

�
�

�
�

�

cs3157-spring2003-sklar-lect10 22� �

� �

specification phase.

� the “contract” — frequently a legal document

� what the product will do, not how to do it

� should NOT be:

– ambiguous, e.g., “optimal”

– incomplete, e.g., omitting modules

– contradictory

� detailed, to allow cost and duration estimation

� classical vs object-oriented (OO) specification

– classical: flow chart, data-flow diagram

– object-oriented: UML

cs3157-spring2003-sklar-lect10 23� �

� �

today’s example.
� the Metro kiosk

� write a specification to satisfy the requirements

� e.g., all kiosks should reflect trouble with a train

�
�

�
�

cs3157-spring2003-sklar-lect10 24� �

� �

design phase.

� the “how” of the project

� fills in the underlying aspects of the specification

� design decisions last a long time!

� even after the finished product

– maintenance documentation

– try to leave it open-ended

� architectural design: decompose project into modules

� detailed design: each module (data structures, algorithms)

� UML can also be useful for design

cs3157-spring2003-sklar-lect10 25� �

� �

today’s example.

� the Metro kiosk

� design one part of the specification

� e.g., how do multiple kiosks send/receive information about trouble with a train?

�
�

�
�

�

cs3157-spring2003-sklar-lect10 26� �

� �

implementation phase.

� implement the design in programming language(s)

� observe standardized programming mechanisms

� testing: code review, unit testing

� documentation: commented code, test cases

� integration considerations

– combine modules and check the whole product

– top-down vs bottom-up ?

– testing: product and acceptance testing; code review

– documentation: commented code, test cases

– done continually with implementation (can’t wait until the last minute!)

cs3157-spring2003-sklar-lect10 27� �

� �

maintenance phase.
� defined by Schach as any change

� by far the most expensive phase

� poor (or lost) documentation often makes the situation even worse

� programmers hate it

� several types:

– corrective (bugs)

– perfective (additions to improve)

– adaptive (system or other underlying changes)

� testing maintenance: regression testing (will it still work now that I’ve fixed it?)

� documentation: record all the changes made and why, as well as new test cases

cs3157-spring2003-sklar-lect10 28� �

� �

today’s example.

� the Metro kiosk

� e.g., how might the system change once it’s been implemented?

�
�

�
�

�

cs3157-spring2003-sklar-lect10 29� �

� �

retirement phase.

� the last phase, of course

� why retire?

– changes too drastic (e.g., redesign)

– too many dependencies (“house of cards”)

– no documentation

– hardware obsolete

� true retirement rate: product no longer useful

cs3157-spring2003-sklar-lect10 30� �

� �

planning and estimation.

� we still need to deal with the bottom line

– how much will it cost?

– can you stick to your estimate?

– how long will it take?

– can you stick to your estimate?

� how do you measure the product (size, complexity)?

�

cs3157-spring2003-sklar-lect10 31� �

� �

reusability.
� impediments:

� lack of trust

� logistics of reuse

� loss of knowledge base

� mismatch of features

cs3157-spring2003-sklar-lect10 32� �

� �

reusability: how to.

� libraries

� APIs

� system calls

� objects (OOP)

� frameworks (a generic body into which you add your particular code)

cs3157-spring2003-sklar-lect10 33� �

� �

portability.

� Java and C#

� Java: uses a JVM

– write once, run anywhere (sorta, kinda)

� C#: also uses a JVM

– emphasizes mobile data rather than code

� winner?

– betting against Microsoft is historically a losing proposition...

cs3157-spring2003-sklar-lect10 34� �

� �

interoperabilty.

� e.g., CORBA

� define abstract services

� allow programs in any language to access services in any language in any location

� object-ish

cs3157-spring2003-sklar-lect10 35� �

� �

scalability.
� something to keep in mind

� don’t worry about scaling beyond the abilities of the machine

� avoid unnecessary barriers

� from single connection to forking processes to threads...

cs3157-spring2003-sklar-lect10 36� �

� �

UML.

� history

� use case diagrams

� class diagrams

� sequence diagrams

� state diagrams

cs3157-spring2003-sklar-lect10 37� �

� �

UML: history.

� need to draw pictures

� every guru has her own style

� “the three amigos”: Grady Booch, James Rumbaugh, Ivar Jacobson

cs3157-spring2003-sklar-lect10 38� �

� �

UML: use case diagrams.

� diagrams how system is used

� show little stick figures interacting with system...

cs3157-spring2003-sklar-lect10 39� �

� �

UML: class diagrams.
� the “guts” of UML

� shows static class relationships

� generalization = inheritance

� classes, attributes, operations

� relationships

– association = “has a”

– multiplicities

– can have a role name

– navigability

– constraints/contracts

– composition

cs3157-spring2003-sklar-lect10 40� �

� �

UML: sequence diagrams.

� show lifetime of objects

� and their interaction

� “lifelines” arranged vertically

� smae info as collaboration diagram

cs3157-spring2003-sklar-lect10 41� �

� �

UML: state diagrams.

� shows states, transitions between them

� long running actions happen within states

� fast, uninterruptable actions transition between states

� transition labels: Event / Action

cs3157-spring2003-sklar-lect10 42� �

� �

UML: tips.

� can highlight lousy design

– bottlenecks, single points of failure

� drawing communication system as a component

� want to show what you intended: a simple, effective design

cs3157-spring2003-sklar-lect10 43� �

