
� �

cs3157: c++ lecture #2 (mon-11-apr-2005)

� today:

– language basics: identifiers, data types, operators, type conversions, branching and
looping, program structure

– data structures: arrays, structures

– pointers and references

– I/O: writing to the screen, reading from the keyboard, iostream library

– functions: defining, overloading, inlining, overriding

– classes: defining, scope, ctors and dtors

– listing of keywords

cs3157-spring2005-sklar-cpp 1� �

� �

chronology of some programming languages...

� (1958) Algol created – the first high-level structured language with a systematic syntax

� (1969) UNIX created using BCPL (Basic Combined Programming Language)

� (1969) B created by Ken Thompson, as a replacement for BCPL

� (1970) Pascal established as the successor to Algol

� (1973) C completed, and released as the successor to B, giving the user control of data
types

� (1979) Bjarne Stroustrup begins work on C-with-Classes, an Object Oriented version of
C

� (1983) C-with-Classes redesigned and released as C++

� (1985) First mass release of C++ compilers

cs3157-spring2005-sklar-cpp 2� �

� �

C++ vs Java

� advantages of C++ over Java:

– C++ is very powerful

– C++ is very fast

– C++ is much more efficient in terms of memory

– compiled directly for specific machines (instead of bytecode layer, which could also
be seen as a portability advantage of Java over C++...)

� disadvantages of C++ over Java:

– Java protects you from making mistakes that C/C++ don’t, as you’ve learned now
from working with C

– C++ has many concepts and possibilities so it has a steep learning curve

– extensive use of operator overloading, function overloading and virtual functions can
very quickly make C++ programs very complicated

– shortcuts offered in C++ can often make it completely unreadable, just like in C

cs3157-spring2005-sklar-cpp 3� �

� �

identifiers.
� i.e., valid names for variables, methods, classes, etc

� just like C:

– names consist of letters, digits and underscores

– names cannot begin with a digit

– names cannot be a C++ keyword

� literals are just like in C with a few extras:

– numbers, e.g.: 5, 5u, 5L, 0x5, true

– characters, e.g., ’A’

– strings, e.g., "you" which is stored in 4 bytes as ’y’, ’o’, ’u’, ’\0’

cs3157-spring2005-sklar-cpp 4� �

� �

data types.

� simple native data types: bool, int, double, char, wchar_t

� bool is like boolean in Java

� wchar_t is “wide char” for representing data from character sets with more than 255
characters

� modifiers: short, long, signed, unsigned, e.g., short int

� floating point types: float, double, long double

� enum and typedef just like C

cs3157-spring2005-sklar-cpp 5� �

� �

operators.

� same as C, with some additions

� if you recognize it from C, then it’s pretty safe to assume it is doing the same thing in
C++

cs3157-spring2005-sklar-cpp 6� �

� �

type conversions.

� all integer math is done using int datatypes, so all types
(bool, char, short, enum) are promoted to int before any arithmetic
operations are performed on them

� mixed expressions of integer / floating types promote the lower type to the higher type
according to the following hierarchy:
int < unsigned < long < unsigned long
< float < double < long double

� you can do explicit conversions like in C using (int), e.g.

� you can also do explicit conversions using C++ operators:

– static_cast – safe and portable; e.g. c = static_cast<char>(i);

– reinterpret_cast – system dependent, not good to use

– const_cast – lets you change a const into a modifiable variable

– dynamic_cast – used at run-time for casting objects from one class to another
(within inheritance hierarchy); this is sort of like Java but can get really messy and is
really a more advanced topic...

cs3157-spring2005-sklar-cpp 7� �

� �

branching and looping.
� if, if/else just like C and Java

� while and for and do/while just like C and Java

� break and continue just like C and Java

� switch just like C and Java

� goto just like C (but don’t use it!!!)

cs3157-spring2005-sklar-cpp 8� �

� �

program structure.

� just like in C

� program is a collection of functions and declarations

� language is block-structured

� declarations are made at the beginning of a block; allocated on entry to the block and
freed when exiting the block

� parameters are call-by-value unless otherwise specified

cs3157-spring2005-sklar-cpp 9� �

� �

arrays.

� similar to C

� dynamic memory allocation handled using new and delete instead of malloc (and
family) and free

� examples:

int a[5];
char b[3] = { ’a’, ’b’, ’c’ };
double c[4][5];
int *p = new int(5); // space allocated and *p set to 5
int **q = new int[10]; // space allocated and q = &q[0]
int *r = new int; // space allocated but not initialized

cs3157-spring2005-sklar-cpp 10� �

� �

structures.

� struct keyword like in C (but you don’t need typedef)

� use dot operator or -> to access members (fields) of a struct or struct *

� C++ allows functions to be members, whereas C only allows data members (i.e., fields)

� example

struct point {
public:

void print() const { cout << "(" << x "," << y << ")"; }
void set(double u, double v) { x=u; y=v; }

private:
double x, y;

}

cs3157-spring2005-sklar-cpp 11� �

� �

pointers and references.
� pointers are like C:

– int *p means “pointer to int”

– p = &i means p gets the address of object i

� references are not like C!! they are basically aliases – alternative names – for the values
stored at the indicated memory locations, e.g.:

int n;
int &nn = n;
double a[10];
double &last = a[9];

� the difference between them:

int a = 5; // declare and define a
int *p = &a; // p points to a
int &ref_a = a; // alias (reference) for a
*p = 7; // *p points to a, so a is assigned 7
a = *p + 1; // a is assigned value of *p=7 plus 1

cs3157-spring2005-sklar-cpp 12� �

� �

I/O: writing to the screen.

// hello world in C++
#include <iostream>
using namespace std;

int main() {
cout << "hello world" << endl;

}

� comment characters are // or /* ... */, just like Java

� using namespace is sort of like importing a package in Java; it is used in
conjunction with the header declaration

� you could also say #include <iostream.h> and leave out the
using namespace std; line; this is an older style of C++ but it still works

� cout << is like System.out.print in Java or like printf() in C

� endl outputs a newline; saying cout << "\n"; does the same thing

cs3157-spring2005-sklar-cpp 13� �

� �

I/O: reading from the keyboard.

� read from the keyboard using cin >>, which is like scanf() in C

� example:

#include <iostream>
using namespace std;

int main() {
int i;
cout << "enter a number: ";
cin >> i;
cout << "you entered " << i <<"\n";

}

cs3157-spring2005-sklar-cpp 14� �

� �

I/O: C++ iostream.

� two bit-shift operators:

– << meaning “put to” output stream (“left shift”)

– >> meaning “get from” input stream (“right shift”)

� three standard streams:

– cout is standard out

– cin is standard in

– cerr is standard error

� if you specify the namespace, you can use these directly; otherwise you’d have to say
std::cout, e.g.

� the iostream library is “type safe”, so you don’t have to use formatting statements —
variables are input/output based on their datatype

cs3157-spring2005-sklar-cpp 15� �

� �

I/O: ostream and istream.
� ostream

– cout is an ostream, << is an operator

– use cout.put(char c) to write a single char

– use cout.write(const char *p, int n) to write n chars

– use cout.flush() to flush the stream

� istream

– cin is an istream, >> is an operator

– use cin.get(char &c) to read a single char

– use cin.get(char *s, int n, char c=’\n’) to read a line
(inputs into string s at most n-1 characters, up to the specified delimiter c or an
EOF; a terminating 0 is placed at the end of the input string s)

– also cin.getline(char *s, int n, char c=’\n’)

– use cin.read(char *s, int n) to read a string

cs3157-spring2005-sklar-cpp 16� �

� �

I/O: formatted output.

� in <iomanip> header file, the following are defined:

� scientific – prints using scientific notation

� left – fills characters to right of value

� right – fills characers to left of value

� internal – fills characters between sign and value

� setfill(int) – sets fill character

� setw(int) – sets field width

� setprecision(int) – sets floating point precision

cs3157-spring2005-sklar-cpp 17� �

� �

I/O: fstream.

� definitions:

ifstream();
ifstream(const char *,int ios::in, int prot=filebuf::openprot);
ofstream();
ofstream(const char *,int ios::out, int prot=filebuf::openprot);

where

ios::in = open for input
ios::app = open for appending
ios::out = open for output

� if you create an ifstream or ofstream using a default constructor, then use
open(const char *,int ios::in, int prot=filebuf::openprot);
to open the associated file

� use close() to close the file when done with it

� use put() to send output to ofstream and use get() to get input from ifstream

cs3157-spring2005-sklar-cpp 18� �

� �

functions.

� parameters are call-by-value

� function prototypes are just like in C

� default arguments

– used when a function is frequently called with the same argument value

– defined in the function header (and prototype)

– e.g., int add_increment(int i, int increment = 1);
invoked as either:
i = add_increment(j); to add 1 to j or
i = add_increment(j, x); to add x to j

� functions can be arguments (like function pointers in C) (advanced topic...)

cs3157-spring2005-sklar-cpp 19� �

� �

functions: overloading
� like in Java

� when you use the same name for functions with different signatures

� i.e., allows multiple definitions for the same function name within the same scope, with
different variable types

� e.g.:

double average(const int size, int& sum);
double average(const int size, double& sum);

cs3157-spring2005-sklar-cpp 20� �

� �

functions: inlining

� same principle as #define macros

� but type safe

� purpose is to save runtime by avoiding function invocation if/when possible

� example:

#define CUBE(X) ((X) * (X) * (X))

versus

inline double cube (double x) {
return(x * x * x);

}

cs3157-spring2005-sklar-cpp 21� �

� �

functions: chaining

� calling the base-class version of a function from the derived class

� suppose both IntArray and StatsIntArray have functions called init()

� you can invoke IntArray::init() from StatsIntArray::init():

void StatsIntArray::init() {
IntArray::init(); // chaining
buf = 0;

}

cs3157-spring2005-sklar-cpp 22� �

� �

classes.

� class keyword

� just like struct except with class, the default privacy specification is private
whereas with struct, the default privacy specification is public

� example

class point {
double x, y; // implicitly private
public:

void print() const { cout << "(" << x "," << y << ")"; }
void set(double u, double v) { x=u; y=v; }

}

� classes can be nested

� this is like in Java

� static is like in Java, with some wierd subtleties

cs3157-spring2005-sklar-cpp 23� �

� �

classes: function overloading and overriding
� overloading:

– when you use the same name for functions with different signatures

– functions in derived class supercede any functions in base class with the same name

� overriding:

– when you change the behavior of base-class function in a derived class

– DON’T OVERRIDE BASE-CLASS FUNCTIONS!!

� because compiler can invoke wrong version by mistake

� but init() is okay to override

� (more explanation in ch 12...)

cs3157-spring2005-sklar-cpp 24� �

� �

classes: class scope operator.

� ::

� example:

::i // refers to external scope
point::x // refers to class scope
std::count // refers to namespace scope

� given previous definition of point, we could do:

point p;
p.print();
p.point::print(); // redundant but legal

cs3157-spring2005-sklar-cpp 25� �

� �

classes: constructors and destructors.

� constructors are called ctors in C++; they take the same name as the class in which they
are defined, like in Java

� destructors are called dtors in C++; they take the same name as the class in which they
are defined, preceded by a tilde ()̃; sort of like finalize in Java

� ctors can be overloaded and can take arguments

� dtors can not

� default constructor has no arguments

� constructor with one argument is a conversion constructor that converts its argument
datatype to an object of the class being constructed

� constructor initializer is a special type of constructor that is used to initialize the values
of data members of a class

cs3157-spring2005-sklar-cpp 26� �

� �

� example:

class point {
public:

point() : x(0), y(0) { } // default
point(double u) : x(u), y(0) { } // conversion
point(double u, double v) : x(u), y(v) { }

.

.

.
}

cs3157-spring2005-sklar-cpp 27� �

� �

classes: more about constructors
� default constructor (ctor”)

� has same name as class it constructs

� in array5.cpp, ctor is used instead of init()

� declare as:

class IntArray() {
public:

IntArray();
// etc
}
void IntArray::IntArray() {

numElems = 0;
elems = 0;

} // end of default constructor

� invoked when object is allocated: IntArray a;

� but remember that built-in types are not automatically initialized

cs3157-spring2005-sklar-cpp 28� �

� �

more about destructors

� default destructor (“dtor”)

� performs same job as cleanup():

class IntArray {
public:

IntArray(); // constructor
˜IntArray(); // destructor
// etc

}
void IntArray::˜IntArray() {

if (elems != 0) free(elems);
}

� invoked automatically when object is no longer usable (i.e., when it is popped off the
stack, like a local function variable)

cs3157-spring2005-sklar-cpp 29� �

� �

more stuff to know about ctors and dtors

� chaining

– constructors and destructors are chained automatically

– derived class ctors invoke base class constructors and

– execute in reverse order (lowest base class first)

– derived class dtors invoke base class dtors and execute in order (derived class first)

� arrays

– default ctors and dtors are called on each element in the array

� implicit ctors and dtors exist (and are invoked) if you don’t write them explicitly

� ctors and dtors can be private, but typically are public

� never invoke default ctors or dtors explicitly!
e.g.: ia.IntArray(); // NO!!!
ia.˜IntArray(); // NO!!!

� stages of object’s life (p 75)

cs3157-spring2005-sklar-cpp 30� �

� �

classes: abstraction with member functions

� example #1: array1.cpp

� example #2: array2.cpp

– array1.cpp with interface functions

� example #3: array3.cpp

– array2.cpp with member functions

� class definition

� public vs private

� declaring member functions inside/outside class definition

� scope operator (::)

� this pointer

cs3157-spring2005-sklar-cpp 31� �

� �

classes: access specifiers
� public

– public members

– can be accessed from any function

� private

– private members

� can only be accessed by class’s own members

� and by “friends” (see ahead)

– “access violations” when you don’t obey the rules...

� can be listed in any order

� can be repeated

cs3157-spring2005-sklar-cpp 32� �

� �

classes: friends

� allows two or more classes to share private members

� e.g., container and iterator classes

� friendship is not transitive

cs3157-spring2005-sklar-cpp 33� �

� �

classes: hierarchy with composition and derivation

� composition:

– creating objects with other objects as members

– example: array4.cpp

� derivation:

– defining classes by expanding other classes

– like “extends” in java

– example:

class SortIntArray : public IntArray {
public:
void sort();

private:
int *sortBuf;

}; // end of class SortIntArray

– “base class” (IntArray) and “derived class” (SortIntArray)

– derived class can only access public members of base class

cs3157-spring2005-sklar-cpp 34� �

� �

– complete example: array5.cpp

– public vs private derivation:

� public derivation means that users of the derived class can access the public
portions of the base class

� private derivation means that all of the base class is inaccessible to anything
outside the derived class

� private is the default

cs3157-spring2005-sklar-cpp 35� �

� �

classes: derivation, continued.
� encapsulation

– derivation maintains encapsulation

– i.e., it is better to expand IntArray and add sort() than to modify your own
version of IntArray

� friendship

– not the same as derivation!!

– example:

�

��

is a friend of

��

�

��

is derived from

��

�

��

is derived from

��

�

��

has special access to private members of

��

, as a friend

� but

��

does not inherit this special access

� nor does

� �

get special access to

��

(derived from friend

��

)

cs3157-spring2005-sklar-cpp 36� �

� �

classes: derivation and pointer conversion

� derived-class instance is treated like a base-class instance

� but you can’t go the other way

� example:

main() {
IntArray ia, *pia;

// base-class object and pointer
StatsIntArray sia, *psia;

// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:

// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)

psia = (StatsIntArray *)&ia; // no: because ia isn’t a StatsIntArray

cs3157-spring2005-sklar-cpp 37� �

� �

}

� danger:

– don’t point a base class pointer to an array of derived objects!

– they aren’t the same size!

cs3157-spring2005-sklar-cpp 38� �

� �

C++ keywords.

asm else new this
auto enum operator throw
bool explicit private true
break export protected try
case extern public typedef
catch false register typeid
char float reinterpret cast typename
class for return union
const friend short unsigned
const cast goto signed using
continue if sizeof virtual
default inline static void
delete int static cast volatile
do long struct wchar t
double mutable switch while
dynamic cast namespace template

cs3157-spring2005-sklar-cpp 39� �

