e N (7 R
€s3157: c++ lecture #2 (mon-11-apr-2005) chronology of some programming languages...
o (1958) Algol created — the first high-level structured language with a systematic syntax
o today: o (1969) UNIX created using BCPL (Basic Combined Programming Language)
- Ianggage basics: identifiers, data types, operators, type conversions, branching and o (1969) B created by Ken Thompson, as a replacement for BCPL
looping, program structure i
_ data structures: amrays, struchures ® (1970) Pascal established as the successor to Algol
— pointers and references e (1973) C completed, and released as the successor to B, giving the user control of data
— 1/0: writing to the screen, reading from the keyboard, 1ostream library types
— functions: defining, overloading, inlining, overriding o (1979) Bjarne Stroustrup begins work on C-with-Classes, an Object Oriented version of
— classes: defining, scope, ctors and dtors c
— listing of keywords © (1983) C-with-Classes redesigned and released as C++
© (1985) First mass release of C++ compilers
s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp 2
o 2N _J
- N I
C++ vsJava identifi ers.
e advantages of C++ over Java: e i.e., valid names for variables, methods, classes, etc
— C++ is very powerful o just like C:
— C++is very fast — names consist of letters, digits and underscores
— C++ is much more efficient in terms of memory — names cannot begin with a digit
— compiled directly for specific machines (instead of bytecode layer, which could also — names cannot be a C++ keyword
be seen as a portability advantage of Java over C++...) . AT .
o literals are just like in C with a few extras:
disadvantages of C++ over Java:
* g ] ) —numbers, e.g.: 5, 5u, 5L, Ox5, true
- Java protec_ts yoy from making mistakes that C/C++ don’t, as you’ve learned now — characters, e.g., A
from working with C . L .
. i . - strings, e.g., ""you"" which is stored in 4 bytesas *y”, “0”, “u”, ”\0~
— C++ has many concepts and possibilities so it has a steep learning curve
— extensive use of operator overloading, function overloading and virtual functions can
very quickly make C++ programs very complicated
— shortcuts offered in C++ can often make it completely unreadable, just like in C
€s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp 4
- AN J




N N
data types. operators.
o simple native data types: bool, int, double, char, wchar_t o same as C, with some additions
e bool is like boolean in Java o if you recognize it from C, then it’s pretty safe to assume it is doing the same thing in
e wchar_t is “wide char” for representing data from character sets with more than 255 C+
characters
o modifiers: short, long, signed, unsigned, eg., short int
o floating point types: float, double, long double
e enum and typedef just like C
s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp
2N _/
N I
type conversions. branching and looping.
e all integer math is done using i nt datatypes, so all types o iT, if/else justlike C and Java
(boo I-, char, short, enum)are promoted to int before any arithmetic o while and For and do/while just like C and Java
operations are performed on them
. . . . . break and continue just like C and Java
o mixed expressions of integer / floating types promote the lower type to the higher type ¢ ]
according to the following hierarchy: e switch just like C and Java
int < unsigned < long < unsigned long o goto just like C (but don’t use it!!!)
< float < double < long double
» you can do explicit conversions like in C using (int), e.g.
e you can also do explicit conversions using C++ operators:
— static_cast - safe and portable; e.g. ¢ = static_cast<char>(i);
- reinterpret_cast - system dependent, not good to use
— const_cast - lets you change a const into a modifiable variable
—dynamic_cast - used at run-time for casting objects from one class to another
(within inheritance hierarchy); this is sort of like Java but can get really messy and is
really a more advanced topic...
€s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp
AN J




N N
program structure. arrays.
e just like in C e similarto C
o program is a collection of functions and declarations o dynamic memory allocation handled using new and de lete instead of mal loc (and
o language is block-structured family) and free
. _— . o examples:
o declarations are made at the beginning of a block; allocated on entry to the block and
freed when exiting the block int a[5]:
o parameters are call-by-value unless otherwise specified char b[3] = { "a*, *b”, “c” };
double c[41[5];
int *p = new int(5); // space allocated and *p set to 5
int **q = new Int[10]; // space allocated and q = &q[0]
int *r = new int; // space allocated but not initialized
s3157-spring2005-sklar-cpp 9 €s3157-spring2005-sklar-cpp 10
2N _/
N I
structures. pointers and references.
e struct keyword like in C (but you don’t need typede¥) e pointersare like C:
o use dot operator or —> to access members (fields) of a struct or struct * - int *p means “pointer to int”
e C++ allows functions to be members, whereas C only allows data members (i.e., fields) ~P = &i means p gets the address of object i
o referencesare not like C!! they are basically aliases — alternative names — for the values
e example - .
stored at the indicated memory locations, e.g.:
Struct_pc_)lnt { int n:
pubI!c. B . . e~ int &nn = n;
vo!d print() const { cout << "( <f x B _<< y << ")"; } double a[10];
\_/0|d set( double u, double v ) { x=u; y=v; } double &last = a[9];
private: ]
double x, y; o the difference between them:
} int a = 5; // declare and define a
int *p = &a; // p points to a
int &ref_a = a; // alias (reference) for a
*p =7; // *p points to a, so a is assigned 7
a="*p+1; // a is assigned value of *p=7 plus 1
©s3157-spring2005-sklar-cpp 11 €s3157-spring2005-sklar-cpp 12
AN J




4 N 7
1/O: writing to the screen. 1/0O: reading from the keyboard.
// hello world in C++ o read from the keyboard using cin >>, which is like scanf() inC
#i rjclude <iostream> o example:
using namespace std;
#include <iostream>
int mainQ) { using namespace std;
cout << "hello world"” << endl;
} int main(Q) {
int i;
* * H i ?
e comment charactersare // or /* ... */,just like Java cout << “enter a number: "':
e using namespace is sort of like importing a package in Java; it is used in cin >> i;
conjunction with the header declaration cout << "you entered " << I <<'"\n";
e you could also say #include <iostream.h> and leave out the }
using namespace std; line; this is an older style of C++ but it still works
e cout <<islike System.out.printinJavaorlike printf()inC
e endl outputs a newline; saying cout << *"\n"'; does the same thing
s3157-spring2005-sklar-cpp 13 €s3157-spring2005-sklar-cpp 14
o _J _J
e N I
1/0O: C++ iostream. 1/O: ostream and istream.
o two bit-shift operators: e Ostream
— << meaning “put to” output stream (“left shift”) — cout is an ostream, << is an operator
— >>meaning “get from” input stream (“right shift”) —use cout.put( char c ) towriteasingle char
o three standard streams: —use cout.write( const char *p, int n ) towritenchars
_ cout is standard out —use cout.Flush() to flush the stream
— cinis standard in e istream
— cerr is standard error —cinisan istream, >> is an operator
o if you specify the namespace, you can use these directly; otherwise you’d have to say —usecin.get( char &c ) toreadasingle char
std::cout, eg. —usecin.get( char *s, int n, char c="\n” )toreadaline
« the iostream library is “type safe”, so you don’t have to use formatting statements — (inputs into §trlqg s at_ most n-1 characters, up Fo the Sp?CIfled delimiter c or an
variables are input/output based on their datatype EOF; a terminating O is placed at the end of the input string s)
—alsocin.getline( char *s, int n, char c="\n" )
—usecin.read( char *s, int n )toreadastring
€s3157-spring2005-sklar-cpp 15 €s3157-spring2005-sklar-cpp 16
o O\ %




e N (7 R
1/O: formatted output. I/O: fstream.
e in <iomanip> header file, the following are defined: o definitions:
e scientific - prints using scientific notation ifstream();
o left —fills characters to right of value ifstream( const char *,int ios::in, int prot=Ffilebuf::openprot )
R . ofstream();
¢ right —fills characers to left of value ofstream( const char *,int ios::out, int prot=Ffilebuf::openprot
e internal —fills characters between sign and value
where
e setfill( int ) —setsfill character _ _ -
i} ) . ios::in = open for input
e setw( int ) - sets field width ios::zapp = open for appending
e setprecision( int ) - sets floating point precision ios::out = open for output
o if you create an i fstream or ofstream using a default constructor, then use
open( const char *,int ios::in, int prot=Ffilebuf::openprot );
to open the associated file
e use close() to close the file when done with it
e use put() to send output to oFstream and use get() to get input from i fstream
s3157-spring2005-sklar-cpp 17 €s3157-spring2005-sklar-cpp 18
o 2N _/
e N I
functions. functions: overloading
e parameters are call-by-value o like in Java
 function prototypes are just like in C o when you use the same name for functions with different signatures
o default arguments o i.e., allows multiple definitions for the same function name within the same scope, with
— used when a function is frequently called with the same argument value different variable types
— defined in the function header (and prototype) ®€eg.:
-eg., int add_increment( int i, int increment = 1 ); double average( const int size, int& sum );
invoked as either: double average( const int size, double& sum );
i = add_increment( j );toadd1tojor
i = add_increment( j, x );toaddxtoj
o functions can be arguments (like function pointers in C) (advanced topic...)
€s3157-spring2005-sklar-cpp 19 €s3157-spring2005-sklar-cpp 20
- AN J




" N 7 N
functions: inlining functions: chaining
o same principle as #define macros o calling the base-class version of a function from the derived class
o but type safe e suppose both IntArray and StatsIntArray have functions called init()
e purpose is to save runtime by avoiding function invocation if/when possible e you can invoke IntArray: : init() from StatsIntArray::init():
o example: void StatslIntArray::init(Q) {
#define CUBEQ) (0O * OO * (O) lI)n:::Arrg\y: zinitQ); // chaining
uf = 0;
Versus }
inline double cube ( double x ) {
return( X * x * x );
}
s3157-spring2005-sklar-cpp 21 €s3157-spring2005-sklar-cpp 22
o NG _J
4 N 7 I
classes. classes: function overloading and overriding
e class keyword o overloading:
e just like struct except with class, the default privacy specification is private — when you use the same name for functions with different signatures
whereas with struct, the default privacy specification is public — functions in derived class supercede any functions in base class with the same name
o example o overriding:
class point { — when you change the behavior of base-class function in a derived class
doub!e X, y; // implicitly private - DON’T OVERRIDE BASE-CLASS FUNCTIONS!!
publ 'g - . . . * because compiler can invoke wrong version by mistake
vora Dot snures, e w3 Ly 3 Y it i) iskaytooveric
3 ’ U YRV * (more explanation in ch 12...)
o classes can be nested
e this is like in Java
e static is like in Java, with some wierd subtleties
©s3157-spring2005-sklar-cpp 23 €s3157-spring2005-sklar-cpp 24
o O\ %




N N
classes: class scope operator. classes: constructors and destructors.
o I: e constructors are called ctorsin C++; they take the same name as the class in which they
o example: are defined, like in Java
- J/ ref t t I o destructors are called dtorsin C++; they take the same name as the class in which they
;-)(-):nt' x  J/ ::fz:z tg E)I(a:;n:cops)gope are defined, preceded by a tilde (); sort of like finalize in Java
std::count // refers to namespace scope e ctors can be overloaded and can take arguments
e given previous definition of point, we could do: * dtors can not
point p: o default constructor has no arguments
p.pri nti) : e constructor with one argument is a conversion constructor that converts its argument
p.point::print(); // redundant but legal datatype to an object of the class being constructed
e constructor initializer is a special type of constructor that is used to initialize the values
of data members of a class
s3157-spring2005-sklar-cpp 25 €s3157-spring2005-sklar-cpp 26
2N _/
N I
o example: classes. more about constructors
class point {
public: o default constructor (ctor”)
point() : x(0), y() { } 7/ default .
point( double u ) : x(u), y(0) { } 7/ conversion o has same name as class it constructs
point( double u, double v ) : x(uw, y(v) {} e inarray5.cpp, ctor is used instead of init()
- o declare as:
) class IntArray() {
i public:
IntArray(Q);
// etc
}
void IntArray::IntArray(Q) {
numElems = 0O;
elems = 0;
} 7/ end of default constructor
o invoked when object is allocated: IntArray a;
e but remember that built-in types are not automatically initialized
€s3157-spring2005-sklar-cpp 27 €s3157-spring2005-sklar-cpp 28
AN J




e N (7 R
more about destructors more stuff to know about ctors and dtors
o default destructor (“dtor”) o chaining
o performs same job as cleanup(): — constructors and destructors are chained automatically
class IntArray { — derived class ctors invoke base class constructors and
public: — execute in reverse order (lowest base class first)
IntArray(); // constructor — derived class dtors invoke base class dtors and execute in order (derived class first)
IntArray(); // destructor o arrays
// etc .
3} — default ctors and dtors are called on each element in the array
voi Y y e implicit ctors and dtors exist (and are invoked) if you don’t write them explicitly
oid IntArra IntArray() { | dd (and ked) if d h licitl
i 1= -
3 it Celems 1= 0 ) free( elems ); e ctors and dtors can be private, but typically are public
) ] o ) o o never invoke default ctors or dtors explicitly!
. mvokeq automatically \{vhen opject is no longer usable (i.e., when it is popped off the eg. ia.IntArray(); 7/ NO111
stack, like a local function variable) ia.~IntArray(); // NOII1
o stages of object’s life (p 75)
s3157-spring2005-sklar-cpp 29 €s3157-spring2005-sklar-cpp 30
o 2N _J
- N I
classes: abstraction with member functions classes: access specifi ers
e example #1: arrayl.cpp e public
e example #2: array2.cpp — publ ic members
- array1.cpp with interface functions — can be accessed from any function
o example #3: array3.cpp e private
— array?2. cpp with member functions - private members
o class definition x can only be accessed by class’s own members
_ _ x and by “friends” (see ahead)
e publicvsprivate w o ,
— “access violations” when you don’t obey the rules...
o declaring member functions inside/outside class definition . .
e can be listed in any order
scope operator (: :
* scope op (2 e can be repeated
e this pointer
€s3157-spring2005-sklar-cpp 31 €s3157-spring2005-sklar-cpp 32
- AN J




e N (7 R
classes: friends classes: hierarchy with composition and derivation
o allows two or more classes to share private members e composition:
e e.g., container and iterator classes — creating objects with other objects as members
o friendship is not transitive - example: array4.cpp
 derivation:
— defining classes by expanding other classes
— like “extends” in java
— example:
class SortintArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; 7/ end of class SortintArray
— “base class” (IntArray) and “derived class” (SortIntArray)
— derived class can only access public members of base class
s3157-spring2005-sklar-cpp 33 €s3157-spring2005-sklar-cpp
o 2N _J
- N I
— complete example: array5.cpp classes: derivation, continued.
— public vs private derivation:
x publ i c derivation means that users of the derived class can access the public .
portions of the base class * encapsulation
* private derivation means that all of the base class is inaccessible to anything — derivation maintains encapsulation
outside the derived class —i.e., it is better to expand IntArray and add sort() than to modify your own
* private is the default version of IntArray
o friendship
— not the same as derivation!!
— example:
* b2 is a friend of b1
* d1 is derived from b1
x d2 is derived from b2
* b2 has special access to private members of b1, as a friend
* but d2 does not inherit this special access
* nor does b2 get special access to d1 (derived from friend b1)
€s3157-spring2005-sklar-cpp 35 €s3157-spring2005-sklar-cpp
- AN J




o

classes: derivation and pointer conversion

o derived-class instance is treated like a base-class instance
® but you can’t go the other way

e example:

mainQ) {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a Stat

€s3157- spri ng2005- skl ar - cpp 37

J

ni

o

}

o danger:

— don’t point a base class pointer to an array of derived objects!
— they aren’t the same size!

€s3157-spring2005-sklar-cpp

b

-

~
C++ keywords.

asm else new this
auto enum operator throw
bool explicit private true
break export protected try

case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile
do long struct wchar_t
double mutable  switch while
dynamic_cast namespace template

€s3157-spring2005-sklar-cpp 39




