
� �

cs3157: c++ lecture #3 (mon-18-apr-2005)

� today:

– composition and derivation

– dynamic memory allocation (new/delete vs malloc/free)

– container classes

– iterator classes

– templates

cs3157-spring2005-sklar-cpp 1� �

� �

composition and derivation

� composition:

– creating objects with other objects as members

– example: array4.cpp

� derivation:

– defining classes by expanding other classes

– like “extends” in java

– example:

class SortIntArray : public IntArray {
public:
void sort();

private:
int *sortBuf;

}; // end of class SortIntArray

– “base class” (IntArray) and “derived class” (SortIntArray)

– derived class can only access public members of base class

cs3157-spring2005-sklar-cpp 2� �

� �

– public vs private derivation:

� public derivation means that users of the derived class can access the public
portions of the base class

� private derivation means that all of the base class is inaccessible to anything
outside the derived class

� private is the default

� friendship

– allows two or more classes to share private members

– e.g., container and iterator classes

– friendship is not transitive

� complete example: array5.cpp

cs3157-spring2005-sklar-cpp 3� �

� �

derivation, continued.
� encapsulation

– derivation maintains encapsulation

– i.e., it is better to expand IntArray and add sort() than to modify your own
version of IntArray

� friendship

– not the same as derivation!!

– example:

� ��

is a friend of

��

� 	�

is derived from

��

� 	�

is derived from

��

� ��

has special access to private members of

��

, as a friend

� but

	�

does not inherit this special access

� nor does

� �

get special access to

	�

(derived from friend

��

)

cs3157-spring2005-sklar-cpp 4� �

� �

derivation and pointer conversion

� derived-class instance is treated like a base-class instance

� but you can’t go the other way

� example:

main() {
IntArray ia, *pia; // base-class object and pointer
StatsIntArray sia, *psia; // derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:

// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)

psia = (StatsIntArray *)&ia; // no: because ia isn’t a StatsIntArray
}

� danger:

– don’t point a base class pointer to an array of derived objects!

– they aren’t the same size!

cs3157-spring2005-sklar-cpp 5� �

� �

use of new and delete

� used for dynamic objects

IntArray *pia = new IntArray; // object creation
delete pia; // object destruction

– this makes sure that ctor and dtor are called, unlike malloc() and free()

– new/delete must be called with classes

– built-in types (e.g., int) can use either new/delete or malloc/free (which is what we’ve
done in example code so far)

� dynamic arrays

IntArray pia[] = new IntArray[NUM]; // calls default constructor on
// each element of pia[]

delete[] pia; // calls default destructor on each element of pia[]

cs3157-spring2005-sklar-cpp 6� �

� �

� dynamic initialization of multi-dimensional arrays *not* allowed in C++

� example:

IntArray ***ia3 = new IntArray[2][3][4]; // NO!!!
IntArray ***ia3 = new IntArray**[2]; // OKAY

// ˆˆˆ and then use two nested loops to create inner arrays...
IntArray (*ia3)[3][4] = new IntArray[2][3][4]; // OKAY

// ˆˆˆ dynamic array of static arrays...

� no realloc() in C++ on objects

– do it manually:

1. call new[] on a temporary object of the new size
2. copy values from current object to temporary object
3. destroy current object
4. rename temporary objec to current object

– when out of memory, new returns null or program terminates

cs3157-spring2005-sklar-cpp 7� �

� �

example, dynamic memory allocation.

class mystack {
public:
explicit mystack(int size) : max_len(size), top(EMPTY)
{ assert(size > 0); s=new char[size]; assert(s != 0); }

void reset() { top = EMPTY; }
void push(char c) { s[++top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return(top == EMPTY); }
bool full() const { return(top == FULL); }

private:
enum { EMPTY = -1 };
char *s;
int max_len;
int top;

}

cs3157-spring2005-sklar-cpp 8� �

� �

container classess.

� two types:

– sequence containers

� vectors: stores a sequence of elements

� lists: convenient and efficient way to do internal insertion/deletion

� deques: doubly-ended queue (add at both front and back)

– associative containers

� sets: stores a value according to an ordered relationship; contains only unique
values

� multisets: like a set but allows multiple copies of the same item to be stored

� maps: basic associative array and requires that a comparison operation on the
stored elements be defined

� multimaps: generalization of a map to allow non-unique keys

� the two types share similar interfaces

cs3157-spring2005-sklar-cpp 9� �

� �

iterator classes.

� provide navigation over containers

� sort of an enhanced pointer type

� five types: input, output, forward, bidirectional, random-access

� example:

int main() {
int primes[4] = { 2, 3, 5, 7 };
set<int, greater<int> > s;
set<int, greater<int> > :: const_iterator c_it;
while (ptr != primes + 4)

s.insert(*ptr++);

cout << "the primes below 10 are: " << endl;
for (c_it = s.begin(); c_it != s.end(); ++c_it)

c_out << *c_it << ’\t’;
c_out << endl;

}

cs3157-spring2005-sklar-cpp 10� �

� �

templates.

� template used to allow the same code to be used with respect to various data types
(called “parametric polymorphism”)

� it’s a form of generic programming which is meant to support code re-use

� example is used like this:

mystack<char> a; // declares a stack of 100 chars
mystack<int> b(200); // declares a stack of 200 ints

� there is a Standard Template Library, called STL, which contains templates for many
things including string, vector and complex

� notes:

– char top_of() const { return s[top]; } means that the this
parameter will be constant during the method call

– assert() is a function that says if the argument expression is not true, then the
program execution should abort

cs3157-spring2005-sklar-cpp 11� �

� �

mystack example, using a template.

template <class TYPE>
class mystack {
public:
explicit mystack(int size=100) : max_len(size), top(EMPTY)
{ assert(size > 0); s=new TYPE[size]; assert(s != 0); }

˜mystack() { delete []s; }
void reset() { top = EMPTY; }
void push(TYPE c) { s[++top] = c; }
TYPE pop() { return s[top--]; }
TYPE top_of() const { return s[top]; }
bool empty() const { return(top == EMPTY); }
bool full() const { return(top == FULL); }

private:
enum { EMPTY = -1 };
TYPE *s;
int max_len, top;

}

cs3157-spring2005-sklar-cpp 12� �

