
� �

cs3157: php lecture (mon-25-apr-2005)

� today:

– history and background

– your first php program

– basics

– writing your own functions

– arrays

– classes

– I/O

– on-line documentation

� http://www.php.net (php home page)

� http://www.php.net/manual/en/ (online reference)

cs3157-spring2005-sklar-php 1� �

� �

history and background

� developed in the latter 1990’s

� originally created as “Personal Home Page” tools, by Rasmus Lerdorf

� at first, was a quick tool for embedding sql queries in a web page (v1.0)

� then structured code was added (v2.0), but with a buggy language parser

� official release (v3.0) fixed parser bugs - June 1998

� by Jan 1999, 100,000 web pages were using php!!!

� php is better than cgi because:

– it runs as part of the web server process and doesn’t require forking (unlike cgi)

– it runs faster than cgi

– it’s faster to write...

� php was designed to run with apache web server on unix

– but also runs on windows and mac

� it’s free!

cs3157-spring2005-sklar-php 2� �

� �

� php is coded in C

– has a well-defined API

– extensible

� the way it runs:

– a php engine is installed as part of a web server

– the engine runs the php script and produces html, which gets passed back to the
browser

cs3157-spring2005-sklar-php 3� �

� �

your first program(s)
� hello.php (plain php)

� hello2.php (php embedded in html)

� hello3.php (uses <?php start tag)

cs3157-spring2005-sklar-php 4� �

� �

basics

� php start and end tags: <? ... ?>

� also: <?php ... ?>

� semi-colon ends a statement (like C)

� string constants surrounded by quotes (") or (’)

� you can embed multiple php blocks in a single html file

� variable names are preceded by dollar sign ($)

� user input is through html forms

� the language is case-sensitive, but calls to built-in functions are not (not sure if that’s true
for all built-in functions)

� identifiers are made of letters, numbers and underscore (_); and cannot begin with a
number

� expressions are just like in C

cs3157-spring2005-sklar-php 5� �

� �

data types

� integers

� floating-point numbers

� strings

� loosely typed (you don’t have to declare a variable before you use it)

� conversion functions: intval, doubleval, strval, settype

� settype(<value>, <newtype>) where
newtype="integer", "double" or "string"

� typecasting: (integer), (string), (double), (array), (object)

cs3157-spring2005-sklar-php 6� �

� �

operators

� mathematical: +, -, *, /, %, ++, --

� relational: <, >, <=, >=, ==, !=

� logical: AND, &&, OR, ||, XOR, !

� bitwise: &, |, ˆ (xor), ˜ (ones complement), >>, <<

� assignment: =, =, -=, *=, /=,

� other:

. � concatenate

-> � references a class method or property

=> � initialize array element index

cs3157-spring2005-sklar-php 7� �

� �

conditionals (1)
� if/elseif/else:

if (<expression1>) {
<statement(s)>

}
elseif (<expression2>) {
<statement(s)>

}
else {
<statement(s)>

}

cs3157-spring2005-sklar-php 8� �

� �

conditionals (2)

� tertiary operator:

<conditional-expression> ?
<true-expression> : <false-expression>;

� switch:

switch(<root-expression>) {
case <case-expression>:
<statement(s)>;
break;

default:
<statement(s)>;
break;

}

cs3157-spring2005-sklar-php 9� �

� �

loops

� while

while (<expression>) {
<statement(s)>;

}

� do-while

do {
<statement(s)>;

} while (<expression>);

� for

for (<initialize> ; <continue> ; <increment>) {
<statement(s)>;

}

� break:

– execution jumps outside innermost loop or switch

cs3157-spring2005-sklar-php 10� �

� �

other

� exit() function

– halts execution, meaning that no more code (php or html) is sent to the browser

� built-in constants

– PHP_VERSION

– __FILE__, __LINE__

– TRUE = 1, FALSE = 0

– M_PI = pi (3.1415927....)

cs3157-spring2005-sklar-php 11� �

� �

writing your own functions
� declared just like C:

function <name> (args) {
<body>
[return <value>]

}

� called just like C

� arguments (and local variables) are local, and don’t exist when you exit the function; but
you can use “static” to declare a variable so that when you call a function again, the
value is retained

� use the “global” statement to declare global variables that you want to be able to access
from within a function, or the GLOBALS array (which is like a perl hash)
e.g., GLOBALS[’username’]

� recursion is okay, but be careful!

� example: colors.php

cs3157-spring2005-sklar-php 12� �

� �

arrays

� indexed using [...]

� indeces can be integers or strings (like a perl hash)

� when strings are indeces, it’s called an “associative array”

� array() function can be used to initialize an array

� e.g., $var = array(value0, value1, value2, ...);

� use the => operator to define the index:

$var = array(1=>value1, value2, ...);
$var = array("a"=>value1, "b"=>value2, ...);

� multidimensional arrays are okay (like C)

� example: arrays.php

cs3157-spring2005-sklar-php 13� �

� �

classes

� defining a class:

class <class-name> {
// declare properties
// declare methods

}

� use just like java and c++

� example: myclass.php and userclass.php

� note use of include statement

cs3157-spring2005-sklar-php 14� �

� �

I/O

� get input from html forms using

$_POST[’<name>’]
$_GET[’<name>’]
$_REQUEST[’<name>’]

� file I/O

– basically just like C:

$fp = fopen("filename","w");
fwrite($fp,"stuff");
fclose($fp);

– note that fopen second argument mode is like C)

cs3157-spring2005-sklar-php 15� �

