
� �

cs3157 C lecture #1 (mon-7-feb-2005)

� today:

– C

� compiling

� basic data types and operators

� basic I/O (stdio library)

� type conversions

� looping

� branching

cs3157-spring2005-sklar 1� �

� �

intro (1): why learn C after Java?

� C provides better control of low-level mechanisms such as memory allocation, specific
memory locations

� C performance is usually better than Java and usually more predictable

� Java hides many details needed for writing code, but in C you need to be careful because:

– memory management responsibility left to you

– explicit initialization and error detection left to you

– generally, more lines of (your) code for the same functionality

– more room for you to make mistakes

� most older code is written in C

cs3157-spring2005-sklar 2� �

� �

intro (2): history before C.

� 1960’s: many new languages

– COBOL for commercial programming (databases)

– FORTRAN for numerical and scientific programs

– PL/I as second-generation unified language

– LISP for early AI research

– Assembler for operating systems and timing-critical code

� Bell Labs (research arm of Bell System � AT&T � Lucent) needed own OS

� Ken Thompson: B

� Dennis Ritchie: new language = B + types

cs3157-spring2005-sklar 3� �

� �

intro (3): history of C.
� C

– Dennis Ritchie in late 1960s and early 1970s

– systems programming language

– make OS portable across hardware platforms

– not necessarily for real applications — could be written in Fortran or PL/I

� C++

– Bjarne Stroustrup (Bell Labs), 1980s

– object-oriented features

� Java

– James Gosling in 1990s, originally for embedded systems

– object-oriented, like C++

– ideas and some syntax from C

cs3157-spring2005-sklar 4� �

� �

intro (4): C vs Java.

� Java is mid-90s, high-level Object-Oriented (OO) language

� C is early-70s, procedural language

� C advantages:

– direct access to OS primitives (system calls)

– more control over memory

– fewer library issues — just execute

� C disadvantages:

– language is portable, but APIs are not

– no easy graphics interface

– more control over memory (i.e., memory leaks)

– pre-processor can lead to obscure errors

cs3157-spring2005-sklar 5� �

� �

intro (5): C vs Java.

Java C
object-oriented function-oriented
strongly-typed can be overridden
polymorphism (+,==) very limited (integer/float)
classes for name space (mostly) single name space, file-oriented
macros are external, rarely used macros common (pre-processor)
layered I/O model byte-stream I/O
automatic memory management function calls (C++ has some support)
no pointers pointers (memory addresses) common
by-reference, by-value by-value parameters
exceptions, exception handling signals, signal handling
concurrency (threads) library functions (system calls)
length of array on your own
string as a type on your own (byte[] or char[] with

�

0 end)
dozens of common libraries OS-defined

cs3157-spring2005-sklar 6� �

� �

intro (6): C vs Java.

� Java program

– collection of classes

– class containing main method is starting class

– running java StartClass invokes StartClass.main method

– JVM loads other classes as required

� C program

– collection of functions

– one function – main() – is starting function

– running executable (default name a.out) starts main function

– typically, single program with all user code linked in — but can be dynamic libraries
(.dll, .so)

cs3157-spring2005-sklar 7� �

� �

intro (7): simple example, C vs Java.

Java

public class hello {
public static void main(String[] args) {

System.out.println("hello world! ");
}

}

C

#include <stdio.h>
int main() {
printf("hello world!");
return 0;

}

cs3157-spring2005-sklar 8� �

� �

intro (8): dissecting the example.

� #include <stdio.h> to include header file stdio.h

� # lines processed by pre-processor

� No semicolon at end of pre-processor lines

� Lower-case letters only — C is case-sensitive

� int main() { ... } is the only code executed

� printf(" /* message you want printed */ ");

� \n = newline, \t = tab

� \ in front of other special characters

� printf("Have you heard of \"The Matrix\" ? \n");

cs3157-spring2005-sklar 9� �

� �

executing/compiling C vs Java (1).

� Java programs are compiled and interpreted:

– javac converts foo.java into foo.class

– class file is not machine-specific — it is byte code

– byte code is then interpreted by JVM

– and each JVM is machine-specific

� C programs are compiled into object code and then linked into executables
(to allow for multiple object files and libraries to be compiled together into one program):

– gcc compiles foo.c into foo.o and then links foo.o into a.out

– you can skip writing foo.o if there is only one object file used to create your
executable

– a.out is executed by OS and hardware

– the C compiler is machine-specific, creating code that executes on specific
OS/hardware

cs3157-spring2005-sklar 10� �

� �

executing/compiling C vs Java (2).

x.java

x.c

javac

a.outgcc

java x

args

data

args

data

cs3157-spring2005-sklar 11� �

� �

compiling C programs (1).
� gcc is the C compiler we’ll use in this class

� it’s a free compiler from Gnu (i.e., Gnu C Compiler)

� gcc translates C program into executable for some target

� default file name a.out

$ gcc hello.c
$ a.out
hello world!

cs3157-spring2005-sklar 12� �

� �

compiling C programs (2).

� behavior of gcc is controlled by command-line switches:

-o filename output file for object or executable
-Wall display all warnings
-c compiles but doesn’t link
-g insert code for debugger (gdb)
-p insert code for profiler
-I specify path for include files
-L specify path for library files
-l specify library
-E pre-processor output only

cs3157-spring2005-sklar 13� �

� �

compiling C programs (3).

� two-stage compilation

1. pre-process and compile: gcc -c hello.c

2. link: gcc -o hello hello.o

� linking several modules:
gcc -c a.c � a.o
gcc -c b.c � b.o
gcc -o hello a.o b.o

� using a library, for example the “math” library (libm):
gcc -o calc calc.c -lm

cs3157-spring2005-sklar 14� �

� �

compiling C programs (4).

� errors can come from multiple sources:

– pre-processor: missing include files

– parser: syntax errors

– assembler: rare

– linker: missing libraries and references

– e.g., undefined names will be reported when linking:

undefined symbol first referenced in file
_print program.o
ld fatal: Symbol referencing errors
No output written to file.

� if gcc gets confused, there can be hundreds of messages!

– fix first message first, and then retry — ignore the rest

� gcc will produce an executable with warnings

� gcc is more forgiving than javac!

cs3157-spring2005-sklar 15� �

� �

C pre-processor (1).
� the C pre-processor (cpp) is a macro-processor which

– manages a collection of macro definitions

– reads a C program and transforms it

� pre-processor directives start with # at beginning of line

� used to:

– include files with C code (typically, “header” files containing definitions; file names
end with .h)

– define new macros (later – not today)

– conditionally compile parts of file (later – not today)

� gcc -E shows output of pre-processor

� can be used independently of compiler

cs3157-spring2005-sklar 16� �

� �

C pre-processor (2).

� file inclusion

#include "filename.h"
#include <filename>

� inserts contents of filename into file to be compiled

� "filename.h" relative to current directory

� <filename> relative to /usr/include or in default path (specified by -I compiler
directive); note that file is named verb+filename.h+

� import function prototypes (in contrast with Java import)
(more about function prototypes later)

� examples:

#include <stdio.h>
#include "mydefs.h"
#include "/home/sklar/programs/defs.h"

cs3157-spring2005-sklar 17� �

� �

now let’s get down to actually writing some programs in C...

cs3157-spring2005-sklar 18� �

� �

C comments.

� /* any text until */

� // until end of line

� convention for longer comments:

/*
* AverageGrade()
* Given an array of grades, compute the average.
*/

� avoid **** boxes - hard to edit, usually look ragged.

cs3157-spring2005-sklar 19� �

� �

C data types (1).
� sizes and limits (may vary for machine; cluster is shown here):

type size in bytes range
(on cluster)

char 8 � �� ��
� � �
� � � � � �
�
� � �

�� �
� �
	

short 16 �
���

�� ��
� � �

��
�

�� � � � �
�
� � �

�� � � �
	

int 32 � ��

� � �
�

� �

�
� � ��
� � �
�
�

� � �
�

� �

�
� � � � � �
�
� � �

�� � � �
	

long 32 � ��

� � �
�

� �

�
� � ��
� � �
��
�

� � �
�

� �

�
� � � � � �
�
� � �

�� � � �
	

float 32

�� � ��
� � � �
� �� ��

double 64

� � � � � �� �
� � � � � �

�� �

� float has 6 bits of precision (on cluster)

� double has 15 bits of precision (on cluster)

� range differs from one machine to another

– int is “native” size

– e.g., 32 bits on 31-bit machines

– there is always short and long and int will be the same size as one of these

cs3157-spring2005-sklar 20� �

� �

C data types (2).

� you can also have unsigned values:

type size in bytes range
(on cluster)

unsigned char 8

�
� � �

� � � � � � � � �
�

� �

unsigned short 16

�
� � �

� � �
 � � � � � � �
�

� �

unsigned int 32

�
� � �

�
�

� � �
�

� � �
�

� � � � � � � � �
��

� �

unsigned long 32

�
� � �

�
�

� � �
�

� � �
�

� � � � � � � � �
��

� �

� look at /usr/include/limits.h

cs3157-spring2005-sklar 21� �

� �

the stdio library.

� Access stdio functions by

– using #include <stdio.h> for prototypes

– compiler links it automatically

� always defines stdin, stdout, stderr

� use for character, string and file I/O (later)

cs3157-spring2005-sklar 22� �

� �

stdio functions: printf (1).

� int printf(const char *format, ...) formatted output to stdout

� formatting:
conversion argument description
character
c char prints a single character
d or i int prints an integer
u int prints an unsigned int
o int prints an integer in octal
x or X int prints an integer in hexadecimal
e or E float or double print in scientific notation
f float or double print floating point value
g or G float or double same as e,E,f, or f — whichever uses fewest characters
s char* print a string
p void* print a pointer
% none print the % character

cs3157-spring2005-sklar 23� �

� �

stdio functions: printf (2).
� some flags:

flag description
- left justify
+ print plus or minus sign
0 print leading zeros (instead of spaces)

� also specify field width and precision

� example:

printf("i=%d s=%d f=6.3f m=43s",i,s,f,m);

cs3157-spring2005-sklar 24� �

� �

stdio functions: scanf (1).

� int scanf(const char *format, ...) formatted output to stdout

� formatting:

conversion argument description
character
c char* reads a single character
d int* reads a decimal integer
i int* reads an integer in decimal,

octal (leading 0) or hex (leading 0x)
u int* reads an unsigned int
o int* reads an integer in octal
x or X int* reads an integer in hexadecimal
e, E, f, F, g or G float or double reads a floating point value
s char* reads a string
p void** reads a pointer

cs3157-spring2005-sklar 25� �

� �

stdio example.

#include <stdio.h>

void main(void) {
int n = 0; /* initialization required */
printf("how much wood could a woodchuck chuck\n");
printf("if a woodchuck could chuck wood?"); /* prompt user */
scanf("%d",&n); /* read input */
printf("the woodchuck can chuck %d pieces of wood!\n",n);
return;

}

$ a.out
how much wood could a woodchuck chuck
if a woodchuck could chuck wood? 12345
the woodchuck can chuck 12345 pieces of wood!

cs3157-spring2005-sklar 26� �

� �

looping.

� loops in C are just like in Java

� there are 2 methods for looping:

– counter-controlled (loop for a fixed number of times)

– sentinal-controlled (loop while a condition is true)

� there are 3 statements for implementing the 2 methodologies:

– for

– while

– do...while

� as always: beware the infinite loop!

� Ctrl-C interrupts your executing C program

� exercise: can you write 6 loops, one for each method-statement combination?

cs3157-spring2005-sklar 27� �

� �

branching.
� branching in C is just like in Java

� there are 2 ways to do branching:

– if/else

– switch

� questions:

– which is more flexible and powerful?

– one can always be translated into the other, but not the other way around — which is
which?

cs3157-spring2005-sklar 28� �

