e N (7 R
€s3157 C lecture #1 (mon-7-feb-2005) intro (1): why learn C after Java?
o C provides better control of low-level mechanisms such as memory allocation, specific
o today: memory locations
-C o C performance is usually better than Java and usually more predictable
* compiling o Java hides many details needed for writing code, but in C you need to be careful because:
* basic data types and operators -
. o — memory management responsibility left to you
* basic 1/0 (stdio library) L .
. — explicit initialization and error detection left to you
* type conversions . -
+ looping — generally, more lines of (your) code for the same functionality
+ branching — more room for you to make mistakes
e most older code is written in C
€s3157-spring2005-sklar €s3157-spring2005-sklar 2
o _J _J
- N I
intro (2): history before C. intro (3): history of C.
© 1960’s: many new languages oC
— COBOL for commercial programming (databases) — Dennis Ritchie in late 1960s and early 1970s
— FORTRAN for numerical and scientific programs — systems programming language
— PL/I as second-generation unified language — make OS portable across hardware platforms
— LISP for early Al research — not necessarily for real applications — could be written in Fortran or PL/I
— Assembler for operating systems and timing-critical code o C++
o Bell Labs (research arm of Bell System — AT&T — Lucent) needed own OS — Bjarne Stroustrup (Bell Labs), 1980s
e Ken Thompson: B — object-oriented features
o Dennis Ritchie: new language = B + types e Java
— James Gosling in 1990s, originally for embedded systems
— object-oriented, like C++
— ideas and some syntax from C
©s3157-spring2005-sklar €s3157-spring2005-sklar 4
- AN J

e N (7 R
intro (4): C vsJava intro (5): C vsJava
e Java is mid-90s, high-level Object-Oriented (OO) language Java C
] bject-oriented function-oriented
C is early-70s, procedural language 0 i
¢ y P guag strongly-typed can be overridden
o C advantages: polymorphism (+,== very limited (integer/float)
— direct access to OS primitives (system calls) classes for name space (mostly) single name space, file-oriented
— more control over memory macros are external, rarely used | macros common (pre-processor)
. . . layered 1/0 model byte-stream 1/0
— fewer library issues — just execute . -
automatic memory management | function calls (C++ has some support)
o C disadvantages: no pointers pointers (memory addresses) common
— language is portable, but APIs are not by—refgrence, by—v.alue _ b_y—value parameters
— no easy graphics interface exceptions, exception handling s_lgnals, 5|gn{:1l handling
|] leak concurrency (threads) library functions (system calls)
— more control over memory (i.e., memory leaks) length of array on your own
— pre-processor can lead to obscure errors string as a type on your own (byte[] or char[] with \0 end)
dozens of common libraries OS-defined
€s3157-spring2005-sklar €s3157-spring2005-sklar 6
o _J _J
- N I
intro (6): C vs Java. intro (7): simple example, C vs Java.
o Java program Java
— collection of classes publ i c ,CI ass h_el lo { .)
. . . . public static void main(String[] args) {
— class containing main method is starting class . N .o
o - _ Systemout.printin("hello world!)
—runningj ava Startd ass invokes St art C ass. mai n method }
—JVM loads other classes as required }
o C program
— collection of functions C
— one function — mai n() - is starting function #incl ude <stdio. h>
— running executable (default name a. out) starts main function int main() {
— typically, single program with all user code linked in — but can be dynamic libraries printf("hello world!");
(.dll, s0) return O;
}
€s3157-spring2005-sklar €s3157-spring2005-sklar 8
- AN J

e N (7 R
intro (8): dissecting the example. executing/compiling C vs Java (1).
e #i ncl ude <stdi 0. h>to include header file stdio.h e Java programs are compiled and interpreted:
o # lines processed by pre-processor —j avac converts f 0o. j avainto f 0o. cl ass
o No semicolon at end of pre-processor lines — class file is not machine-specific — it is byte code
o Lower-case letters only — C is case-sensitive — byte code is then interpreted by JVM
) . . —and each JVM is machine-specific
eint main() { } is the only code executed
intf("o/ i inted */ ") o C programs are compiled into object code and then linked into executables
e printf(message you want printe) (to allow for multiple object files and libraries to be compiled together into one program):
o\ n=newline,\t = tab —gcc compiles f 0o. c into f 00. o and then links f 00. o into a. out
e\ infront of other special characters — you can skip writing f 00. o if there is only one object file used to create your
eprintf("Have you heard of \"The Matrix\" ? \n"); executable
—a. out is executed by OS and hardware
— the C compiler is machine-specific, creating code that executes on specific
OS/hardware
€s3157-spring2005-sklar 9 €s3157-spring2005-sklar 10
o 2N _J
- N I
executing/compiling C vs Java (2). compiling C programs (1).
data
\ e gcce is the C compiler we’ll use in this class
xjava javac javax o it’s a free compiler from Gnu (i.e., Gnu C Compiler)
args e gcc translates C program into executable for some target
o default file name a. out
data $ gcc hello.c
$ a.out
X.C gce a.out hel l o world!
args
€s3157-spring2005-sklar 11 €s3157-spring2005-sklar 12
- AN J

e N (7 R
compiling C programs (2). compiling C programs (3).
o behavior of gcc is controlled by command-line switches: o two-stage compilation
-o filename | output file for object or executable 1. pre-process and compile: gcc -c¢ hello.c
-Wall display all warnings 2. link: gcc -0 hello hello.o
-C compiles but doesn’t link linki | modules:
-9 insert code for debugger (gdb) © linking several modules:
-p insert code for profiler gce -¢ 2' = ‘;" 0
-1 specify path for include files gce -¢ h. ICIH -0 b
-L specify path for library files gec -o hello a.0 b.o
-l specify library e using a library, for example the “math” library (I i bm):
-E pre-processor output only gcc -o calc calc.c -Im
€s3157-spring2005-sklar 13 €s3157-spring2005-sklar 14
o 2N _J
- N I
compiling C programs (4). C pre-processor (1).
e errors can come from multiple sources: o the C pre-processor (cpp) is a macro-processor which
— pre-processor: missing include files — manages a collection of macro definitions
— parser: syntax errors —reads a C program and transforms it
— assembler: rare o pre-processor directives start with # at beginning of line
— linker: missing libraries and references .
o used to:
— e.g., undefined names will be reported when linking: .) . .) - —_]
. . . . — include files with C code (typically, “header” files containing definitions; file names
undefi ned synbol first referenced in file .
int end with . h)
_prin program o .
Id fatal : Symbol referencing errors — define new macros (later — not today)
No output witten to file. — conditionally compile parts of file (later — not today)
o if gcc gets confused, there can be hundreds of messages! e gcc -E shows output of pre-processor
— fix first message first, and then retry — ignore the rest o can be used independently of compiler
e gcc will produce an executable with warnings
e gcc is more forgiving than javac!
€s3157-spring2005-sklar 15 €s3157-spring2005-sklar 16
- AN J

e N R
C pre-processor (2). now let's get down to actually writing some programsin C...
o file inclusion
#i nclude "fil enane. h"
#i ncl ude <fil enane>
e inserts contents of filename into file to be compiled
e "fil ename. h" relative to current directory
e <fi | ename> relative to / usr /i ncl ude or in default path (specified by - I compiler
directive); note that file is named verb+filename.h+
o import function prototypes (in contrast with Java import)
(more about function prototypes later)
o examples:
#i ncl ude <stdio. h>
#i ncl ude "nydefs. h"
#i ncl ude "/ home/ skl ar/ prograns/defs. h"
€s3157-spring2005-sklar 17 €s3157-spring2005-sklar 18
o 2N _J
- N I
C comments. C datatypes (1).
e/* any text until */ e sizes and limits (may vary for machine; cluster is shown here):
e// until end of line type |sizein bytes range
(on cluster)
 convention for longer comments: char |8 C128 12T > —27. (T —1)
T short |16 —32,768...32,767 — 215 (215 — 1)
* Aver ageGr ade() int 32 —2,147,483,648 ... 2,147, 483,647 — —2%1. . (231 — 1)
31 31
* Guven an array of grades, conpute the average. long |32 —2,147,483,648 . ..2, 147,483,647 — —23' . (2% —1)
y float |32 10738 .. ~ 3% 10%
double | 64 2% 107308~ 10308
e avoid **** hoxes - hard to edit, usually look ragged. o f10at has 6 bits of precision (on cluster)
e doubl e has 15 bits of precision (on cluster)
o range differs from one machine to another
—int is “native” size
- e.g., 32 bits on 31-bit machines
— there is always shor t and | ong and i nt will be the same size as one of these
€s3157-spring2005-sklar 19 €s3157-spring2005-sklar 20
- AN J

e N (7 R
C datatypes (2). the stdio library.
e you can also have unsigned values: o Access stdio functions by
type size in bytes | range —using #i ncl ude <st di 0. h> for prototypes
. (on cluster) _ — compiler links it automatically
unsigned char |8 0...255—=0...28 -1
unsigned short | 16 0...65535—0...216 _ 1 e always defines st di n, stdout, stderr
unsigned int | 32 0...4,294,967,295 —» 0...2% — 1 o use for character, string and file 1/0 (later)
unsigned long | 32 0...4,294,967,295 - 0...2%2 — 1
elookat/usr/include/limts.h
€s3157-spring2005-sklar 21 €s3157-spring2005-sklar 22
o _J _J
- N I
stdio functions: printf (1). stdio functions: printf (2).
eint printf(const char *format, ...) formatted output to stdout o some flags:
o formatting: flag desc_rip_tion
conversion | argument description - | left justify
character + | print plus or minus sign
c char prints a single character 0 print leading zeros (instead of spaces)
dori int prints an integer » also specify field width and precision
u int prints an unsigned int .
. . . . o example:
0 int prints an integer in octal
X or X int prints an integer in hexadecimal printf("i=% s=% f=6.3f m=43s",i,s,f,m);
eorE float or double | print in scientific notation
f float or double | print floating point value
gorG float or double | same as e,E,f, or f — whichever uses fewest characters
S char* print a string
p void* print a pointer
% none print the % character
€s3157-spring2005-sklar 23 €s3157-spring2005-sklar 24
- AN J

- N A
stdio functions: scanf (1). stdio example.
eint scanf(const char *format, ...) formatted output to stdout #i ncl ude <stdi o. h>
o formatting: .))
conversion argument description vol d main(void) { -))
character int n=0; /* initialization required */
c char* reads a single character pr nt]]:(_h?w mJCdeEOdkCOUI Idda nooichucl;f)fhuf:k) ?)i */
d int* reads a decimal integer pri n; (" %'d" a Wo_o ;:* uc Zo_u ¢ E/C wood?”); pronpt user
i int* reads an integer in decimal, scan § N h‘ &n)‘d h rkea ! nEUt K % pi f di\ " .
octal (leading 0) or hex (leading 0x) print (the woodchuck can chuc pi eces of wood!\n",n);
u int* reads an unsigned int return;
0 int* reads an integer in octal }
xor X int* reads an integer in hexadecimal $ a. out
e, E, f,F, gorG |float or double | reads a floating point value -ou
s g char* readsastringg P how nmuch wood coul d a woodchuck chuck
- . i ?
D void** reads a pointer if a woodchuck coul d chuck wood_. 12345
t he woodchuck can chuck 12345 pieces of wood!
€s3157-spring2005-sklar 25 €s3157-spring2005-sklar 26
o 2N _J
- N I
looping. branching.
e loops in C are just like in Java e branching in C is just like in Java
o there are 2 methods for looping: o there are 2 ways to do branching:
— counter-controlled (loop for a fixed number of times) —-iflelse
— sentinal-controlled (loop while a condition is true) —-switch
o there are 3 statements for implementing the 2 methodologies: e questions:
—for — which is more flexible and powerful?
—while — one can always be translated into the other, but not the other way around — which is
—do...while which?
 as always: beware the infinite loop!
e Ct r| - Cinterrupts your executing C program
e exercise: can you write 6 loops, one for each method-statement combination?
©s3157-spring2005-sklar 27 €s3157-spring2005-sklar 28
- AN J

